Emergence of antibiotic resistance from multinucleated bacterial filaments

Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli . Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-01, Vol.112 (1), p.178-183
Hauptverfasser: Bos, Julia, Zhang, Qiucen, Vyawahare, Saurabh, Rogers, Elizabeth, Rosenberg, Susan M., Austin, Robert H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1
container_start_page 178
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Bos, Julia
Zhang, Qiucen
Vyawahare, Saurabh
Rogers, Elizabeth
Rosenberg, Susan M.
Austin, Robert H.
description Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli . Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer. Significance Understanding how bacteria rapidly evolve under antibiotic selective pressure is crucial to controlling the development of resistant organisms. We show that initial resistance emerges from successful segregation of mutant chromosomes at the tips of filaments followed by budding of resistant progeny. We propose that the first stages of emergence of resistance occur via the generation of multiple chromosomes within the filament and are achieved by mutation and possibly recombination between the chromosomes.
doi_str_mv 10.1073/pnas.1420702111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660399938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26460374</jstor_id><sourcerecordid>26460374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-afeb737c5738a324142b526646c2b55a0768eeae5b5e2e4da20fafb4485c65883</originalsourceid><addsrcrecordid>eNqNkTtvFDEUhS0EIptATQWMlIZmkuu33URCUXgpEgWktjxez-LVzHixPUj8ezzaZReoqGzpfOf4-h6EXmC4wiDp9W6y-QozAhIIxvgRWmHQuBVMw2O0AiCyVYywM3Se8xYANFfwFJ0RzjTRFK_Qp7vRp42fnG9i39iphC7EElyTfA652EXoUxybcR5KmGY3eFv8uumsKz4FOzR9GOzop5KfoSe9HbJ_fjgv0MO7u6-3H9r7z-8_3r69bx1XqrS2952k0nFJlaWE1ek7ToRgwtULtyCF8t563nFPPFtbAr3tO8YUd6Im0At0s8_dzd3o166-nexgdimMNv000QbztzKFb2YTfxhGNBaE1IA3h4AUv88-FzOG7Pww2MnHORssBFCtNVX_gTLKgAtYUi__QbdxTlPdxEJxqphUulLXe8qlmHPy_XFuDGap1CyVmlOl1fHqz-8e-d8dVuDlAVicxzhMDDZYqpO-zSWmk79uHKhkVX-913sbjd2kkM3DFwJYAGDGFQX6CyBYub8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645384789</pqid></control><display><type>article</type><title>Emergence of antibiotic resistance from multinucleated bacterial filaments</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bos, Julia ; Zhang, Qiucen ; Vyawahare, Saurabh ; Rogers, Elizabeth ; Rosenberg, Susan M. ; Austin, Robert H.</creator><creatorcontrib>Bos, Julia ; Zhang, Qiucen ; Vyawahare, Saurabh ; Rogers, Elizabeth ; Rosenberg, Susan M. ; Austin, Robert H.</creatorcontrib><description>Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli . Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer. Significance Understanding how bacteria rapidly evolve under antibiotic selective pressure is crucial to controlling the development of resistant organisms. We show that initial resistance emerges from successful segregation of mutant chromosomes at the tips of filaments followed by budding of resistant progeny. We propose that the first stages of emergence of resistance occur via the generation of multiple chromosomes within the filament and are achieved by mutation and possibly recombination between the chromosomes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1420702111</identifier><identifier>PMID: 25492931</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Antibiotic resistance ; Antibiotics ; Asymmetric Cell Division - drug effects ; Biological Sciences ; Chromosomes ; Chromosomes, Bacterial - metabolism ; Ciprofloxacin - pharmacology ; Cytotoxicity ; DNA repair ; Drug resistance ; Drug Resistance, Microbial - drug effects ; E coli ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - drug effects ; Escherichia coli - isolation &amp; purification ; Escherichia coli - physiology ; Evolutionary biology ; Models, Biological ; Mutagenesis ; Sequence Analysis, DNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-01, Vol.112 (1), p.178-183</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 6, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-afeb737c5738a324142b526646c2b55a0768eeae5b5e2e4da20fafb4485c65883</citedby><cites>FETCH-LOGICAL-c588t-afeb737c5738a324142b526646c2b55a0768eeae5b5e2e4da20fafb4485c65883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26460374$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26460374$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25492931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bos, Julia</creatorcontrib><creatorcontrib>Zhang, Qiucen</creatorcontrib><creatorcontrib>Vyawahare, Saurabh</creatorcontrib><creatorcontrib>Rogers, Elizabeth</creatorcontrib><creatorcontrib>Rosenberg, Susan M.</creatorcontrib><creatorcontrib>Austin, Robert H.</creatorcontrib><title>Emergence of antibiotic resistance from multinucleated bacterial filaments</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli . Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer. Significance Understanding how bacteria rapidly evolve under antibiotic selective pressure is crucial to controlling the development of resistant organisms. We show that initial resistance emerges from successful segregation of mutant chromosomes at the tips of filaments followed by budding of resistant progeny. We propose that the first stages of emergence of resistance occur via the generation of multiple chromosomes within the filament and are achieved by mutation and possibly recombination between the chromosomes.</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Asymmetric Cell Division - drug effects</subject><subject>Biological Sciences</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial - metabolism</subject><subject>Ciprofloxacin - pharmacology</subject><subject>Cytotoxicity</subject><subject>DNA repair</subject><subject>Drug resistance</subject><subject>Drug Resistance, Microbial - drug effects</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - isolation &amp; purification</subject><subject>Escherichia coli - physiology</subject><subject>Evolutionary biology</subject><subject>Models, Biological</subject><subject>Mutagenesis</subject><subject>Sequence Analysis, DNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTtvFDEUhS0EIptATQWMlIZmkuu33URCUXgpEgWktjxez-LVzHixPUj8ezzaZReoqGzpfOf4-h6EXmC4wiDp9W6y-QozAhIIxvgRWmHQuBVMw2O0AiCyVYywM3Se8xYANFfwFJ0RzjTRFK_Qp7vRp42fnG9i39iphC7EElyTfA652EXoUxybcR5KmGY3eFv8uumsKz4FOzR9GOzop5KfoSe9HbJ_fjgv0MO7u6-3H9r7z-8_3r69bx1XqrS2952k0nFJlaWE1ek7ToRgwtULtyCF8t563nFPPFtbAr3tO8YUd6Im0At0s8_dzd3o166-nexgdimMNv000QbztzKFb2YTfxhGNBaE1IA3h4AUv88-FzOG7Pww2MnHORssBFCtNVX_gTLKgAtYUi__QbdxTlPdxEJxqphUulLXe8qlmHPy_XFuDGap1CyVmlOl1fHqz-8e-d8dVuDlAVicxzhMDDZYqpO-zSWmk79uHKhkVX-913sbjd2kkM3DFwJYAGDGFQX6CyBYub8</recordid><startdate>20150106</startdate><enddate>20150106</enddate><creator>Bos, Julia</creator><creator>Zhang, Qiucen</creator><creator>Vyawahare, Saurabh</creator><creator>Rogers, Elizabeth</creator><creator>Rosenberg, Susan M.</creator><creator>Austin, Robert H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope><scope>5PM</scope></search><sort><creationdate>20150106</creationdate><title>Emergence of antibiotic resistance from multinucleated bacterial filaments</title><author>Bos, Julia ; Zhang, Qiucen ; Vyawahare, Saurabh ; Rogers, Elizabeth ; Rosenberg, Susan M. ; Austin, Robert H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-afeb737c5738a324142b526646c2b55a0768eeae5b5e2e4da20fafb4485c65883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Asymmetric Cell Division - drug effects</topic><topic>Biological Sciences</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial - metabolism</topic><topic>Ciprofloxacin - pharmacology</topic><topic>Cytotoxicity</topic><topic>DNA repair</topic><topic>Drug resistance</topic><topic>Drug Resistance, Microbial - drug effects</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - isolation &amp; purification</topic><topic>Escherichia coli - physiology</topic><topic>Evolutionary biology</topic><topic>Models, Biological</topic><topic>Mutagenesis</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bos, Julia</creatorcontrib><creatorcontrib>Zhang, Qiucen</creatorcontrib><creatorcontrib>Vyawahare, Saurabh</creatorcontrib><creatorcontrib>Rogers, Elizabeth</creatorcontrib><creatorcontrib>Rosenberg, Susan M.</creatorcontrib><creatorcontrib>Austin, Robert H.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bos, Julia</au><au>Zhang, Qiucen</au><au>Vyawahare, Saurabh</au><au>Rogers, Elizabeth</au><au>Rosenberg, Susan M.</au><au>Austin, Robert H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emergence of antibiotic resistance from multinucleated bacterial filaments</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-01-06</date><risdate>2015</risdate><volume>112</volume><issue>1</issue><spage>178</spage><epage>183</epage><pages>178-183</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli . Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer. Significance Understanding how bacteria rapidly evolve under antibiotic selective pressure is crucial to controlling the development of resistant organisms. We show that initial resistance emerges from successful segregation of mutant chromosomes at the tips of filaments followed by budding of resistant progeny. We propose that the first stages of emergence of resistance occur via the generation of multiple chromosomes within the filament and are achieved by mutation and possibly recombination between the chromosomes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25492931</pmid><doi>10.1073/pnas.1420702111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-01, Vol.112 (1), p.178-183
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1660399938
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antibiotic resistance
Antibiotics
Asymmetric Cell Division - drug effects
Biological Sciences
Chromosomes
Chromosomes, Bacterial - metabolism
Ciprofloxacin - pharmacology
Cytotoxicity
DNA repair
Drug resistance
Drug Resistance, Microbial - drug effects
E coli
Escherichia coli
Escherichia coli - cytology
Escherichia coli - drug effects
Escherichia coli - isolation & purification
Escherichia coli - physiology
Evolutionary biology
Models, Biological
Mutagenesis
Sequence Analysis, DNA
title Emergence of antibiotic resistance from multinucleated bacterial filaments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emergence%20of%20antibiotic%20resistance%20from%20multinucleated%20bacterial%20filaments&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bos,%20Julia&rft.date=2015-01-06&rft.volume=112&rft.issue=1&rft.spage=178&rft.epage=183&rft.pages=178-183&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1420702111&rft_dat=%3Cjstor_proqu%3E26460374%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645384789&rft_id=info:pmid/25492931&rft_jstor_id=26460374&rfr_iscdi=true