Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal

Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U­(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-11, Vol.48 (22), p.13549-13556
Hauptverfasser: Williamson, Adam J, Morris, Katherine, Law, Gareth T. W, Rizoulis, Athanasios, Charnock, John M, Lloyd, Jonathan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13556
container_issue 22
container_start_page 13549
container_title Environmental science & technology
container_volume 48
creator Williamson, Adam J
Morris, Katherine
Law, Gareth T. W
Rizoulis, Athanasios
Charnock, John M
Lloyd, Jonathan R
description Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U­(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U­(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe­(III) as ferrihydrite. In systems without added Fe­(III), partial U­(VI) reduction occurred, forming a U­(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe­(III), U­(VI) was first removed from solution by sorption to the Fe­(III) mineral, followed by bioreduction and (bio)­magnetite formation coupled to formation of a complex U­(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.
doi_str_mv 10.1021/es5017125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660394096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660394096</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-7ef93a63b7ffaff7ee90340a1fc2104674c1904e3b18552c47d5332601bd07d63</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuAgFrtWL_wDEhChvZh6TjKZzHhXFq0LLUKx6t1wJh-QOjtZkx3Bf2_Wrq3UG69C4OHNyXkZe4FwiiDwjcsKUKNQj9gClYBKtQofswUAyqqTzddD9jTnGwAQEton7FAoIbHVasH8ZTApDoFGfuXsbLYhTjx6fn38eXXC58m6xM_GbzSGyfFlnGzYifyWr9abMRj6feM-Jn5FNkQqAT8c_0J56_i5izbkTcw0PmMHnsbsnu_PI3b9_t2n5Yfq4uP5anl2UVFd47bSzneSGjlo78l77VwHsgZCbwRC3ejaYAe1kwO2SglTa6ukFA3gYEHbRh6x49vcTYrfZ5e3_Tpk48aRJhfn3GPTgOxq6P6HiqZwjVjoqwf0Js5pKh_ZKY1lsFYVdXKrykJzTs73mxTWlH72CP2up_6up2Jf7hPnYe3snfxTTAGv94CyodEnmkzI965sATuJ945M_muqfx78BQ6Yo5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627146785</pqid></control><display><type>article</type><title>Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Williamson, Adam J ; Morris, Katherine ; Law, Gareth T. W ; Rizoulis, Athanasios ; Charnock, John M ; Lloyd, Jonathan R</creator><creatorcontrib>Williamson, Adam J ; Morris, Katherine ; Law, Gareth T. W ; Rizoulis, Athanasios ; Charnock, John M ; Lloyd, Jonathan R</creatorcontrib><description>Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U­(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U­(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe­(III) as ferrihydrite. In systems without added Fe­(III), partial U­(VI) reduction occurred, forming a U­(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe­(III), U­(VI) was first removed from solution by sorption to the Fe­(III) mineral, followed by bioreduction and (bio)­magnetite formation coupled to formation of a complex U­(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es5017125</identifier><identifier>PMID: 25231875</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Absorption, Radiation ; Applied sciences ; Bacteroidetes - genetics ; Bacteroidetes - metabolism ; Base Sequence ; Biodegradation, Environmental ; Biogeochemistry ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; England ; Exact sciences and technology ; Ferric Compounds - metabolism ; Ferrosoferric Oxide - metabolism ; Firmicutes ; Geologic Sediments - chemistry ; Gram-positive bacteria ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Nitrates - metabolism ; Oxidation-Reduction ; Pollution ; Pollution, environment geology ; Radioactive Waste - analysis ; Radioactive wastes ; RNA, Ribosomal, 16S - genetics ; Sediments ; Sequence Analysis, DNA ; Sorption ; Uranium ; Uranium - chemistry ; Uranium - metabolism ; Wastes ; X-Ray Absorption Spectroscopy</subject><ispartof>Environmental science &amp; technology, 2014-11, Vol.48 (22), p.13549-13556</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-7ef93a63b7ffaff7ee90340a1fc2104674c1904e3b18552c47d5332601bd07d63</citedby><cites>FETCH-LOGICAL-a441t-7ef93a63b7ffaff7ee90340a1fc2104674c1904e3b18552c47d5332601bd07d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es5017125$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es5017125$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29041931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25231875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williamson, Adam J</creatorcontrib><creatorcontrib>Morris, Katherine</creatorcontrib><creatorcontrib>Law, Gareth T. W</creatorcontrib><creatorcontrib>Rizoulis, Athanasios</creatorcontrib><creatorcontrib>Charnock, John M</creatorcontrib><creatorcontrib>Lloyd, Jonathan R</creatorcontrib><title>Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U­(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U­(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe­(III) as ferrihydrite. In systems without added Fe­(III), partial U­(VI) reduction occurred, forming a U­(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe­(III), U­(VI) was first removed from solution by sorption to the Fe­(III) mineral, followed by bioreduction and (bio)­magnetite formation coupled to formation of a complex U­(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.</description><subject>Absorption, Radiation</subject><subject>Applied sciences</subject><subject>Bacteroidetes - genetics</subject><subject>Bacteroidetes - metabolism</subject><subject>Base Sequence</subject><subject>Biodegradation, Environmental</subject><subject>Biogeochemistry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>England</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - metabolism</subject><subject>Ferrosoferric Oxide - metabolism</subject><subject>Firmicutes</subject><subject>Geologic Sediments - chemistry</subject><subject>Gram-positive bacteria</subject><subject>Hydrogen-Ion Concentration</subject><subject>Molecular Sequence Data</subject><subject>Nitrates - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Radioactive Waste - analysis</subject><subject>Radioactive wastes</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sediments</subject><subject>Sequence Analysis, DNA</subject><subject>Sorption</subject><subject>Uranium</subject><subject>Uranium - chemistry</subject><subject>Uranium - metabolism</subject><subject>Wastes</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqN0V1rFDEUBuAgFrtWL_wDEhChvZh6TjKZzHhXFq0LLUKx6t1wJh-QOjtZkx3Bf2_Wrq3UG69C4OHNyXkZe4FwiiDwjcsKUKNQj9gClYBKtQofswUAyqqTzddD9jTnGwAQEton7FAoIbHVasH8ZTApDoFGfuXsbLYhTjx6fn38eXXC58m6xM_GbzSGyfFlnGzYifyWr9abMRj6feM-Jn5FNkQqAT8c_0J56_i5izbkTcw0PmMHnsbsnu_PI3b9_t2n5Yfq4uP5anl2UVFd47bSzneSGjlo78l77VwHsgZCbwRC3ejaYAe1kwO2SglTa6ukFA3gYEHbRh6x49vcTYrfZ5e3_Tpk48aRJhfn3GPTgOxq6P6HiqZwjVjoqwf0Js5pKh_ZKY1lsFYVdXKrykJzTs73mxTWlH72CP2up_6up2Jf7hPnYe3snfxTTAGv94CyodEnmkzI965sATuJ945M_muqfx78BQ6Yo5g</recordid><startdate>20141118</startdate><enddate>20141118</enddate><creator>Williamson, Adam J</creator><creator>Morris, Katherine</creator><creator>Law, Gareth T. W</creator><creator>Rizoulis, Athanasios</creator><creator>Charnock, John M</creator><creator>Lloyd, Jonathan R</creator><general>American Chemical Society</general><scope>N~.</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20141118</creationdate><title>Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal</title><author>Williamson, Adam J ; Morris, Katherine ; Law, Gareth T. W ; Rizoulis, Athanasios ; Charnock, John M ; Lloyd, Jonathan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-7ef93a63b7ffaff7ee90340a1fc2104674c1904e3b18552c47d5332601bd07d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorption, Radiation</topic><topic>Applied sciences</topic><topic>Bacteroidetes - genetics</topic><topic>Bacteroidetes - metabolism</topic><topic>Base Sequence</topic><topic>Biodegradation, Environmental</topic><topic>Biogeochemistry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>England</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - metabolism</topic><topic>Ferrosoferric Oxide - metabolism</topic><topic>Firmicutes</topic><topic>Geologic Sediments - chemistry</topic><topic>Gram-positive bacteria</topic><topic>Hydrogen-Ion Concentration</topic><topic>Molecular Sequence Data</topic><topic>Nitrates - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Radioactive Waste - analysis</topic><topic>Radioactive wastes</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sediments</topic><topic>Sequence Analysis, DNA</topic><topic>Sorption</topic><topic>Uranium</topic><topic>Uranium - chemistry</topic><topic>Uranium - metabolism</topic><topic>Wastes</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williamson, Adam J</creatorcontrib><creatorcontrib>Morris, Katherine</creatorcontrib><creatorcontrib>Law, Gareth T. W</creatorcontrib><creatorcontrib>Rizoulis, Athanasios</creatorcontrib><creatorcontrib>Charnock, John M</creatorcontrib><creatorcontrib>Lloyd, Jonathan R</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williamson, Adam J</au><au>Morris, Katherine</au><au>Law, Gareth T. W</au><au>Rizoulis, Athanasios</au><au>Charnock, John M</au><au>Lloyd, Jonathan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-11-18</date><risdate>2014</risdate><volume>48</volume><issue>22</issue><spage>13549</spage><epage>13556</epage><pages>13549-13556</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U­(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U­(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe­(III) as ferrihydrite. In systems without added Fe­(III), partial U­(VI) reduction occurred, forming a U­(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe­(III), U­(VI) was first removed from solution by sorption to the Fe­(III) mineral, followed by bioreduction and (bio)­magnetite formation coupled to formation of a complex U­(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25231875</pmid><doi>10.1021/es5017125</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-11, Vol.48 (22), p.13549-13556
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1660394096
source MEDLINE; American Chemical Society Journals
subjects Absorption, Radiation
Applied sciences
Bacteroidetes - genetics
Bacteroidetes - metabolism
Base Sequence
Biodegradation, Environmental
Biogeochemistry
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
England
Exact sciences and technology
Ferric Compounds - metabolism
Ferrosoferric Oxide - metabolism
Firmicutes
Geologic Sediments - chemistry
Gram-positive bacteria
Hydrogen-Ion Concentration
Molecular Sequence Data
Nitrates - metabolism
Oxidation-Reduction
Pollution
Pollution, environment geology
Radioactive Waste - analysis
Radioactive wastes
RNA, Ribosomal, 16S - genetics
Sediments
Sequence Analysis, DNA
Sorption
Uranium
Uranium - chemistry
Uranium - metabolism
Wastes
X-Ray Absorption Spectroscopy
title Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Reduction%20of%20U(VI)%20under%20Alkaline%20Conditions:%20Implications%20for%20Radioactive%20Waste%20Geodisposal&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Williamson,%20Adam%20J&rft.date=2014-11-18&rft.volume=48&rft.issue=22&rft.spage=13549&rft.epage=13556&rft.pages=13549-13556&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es5017125&rft_dat=%3Cproquest_cross%3E1660394096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627146785&rft_id=info:pmid/25231875&rfr_iscdi=true