Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal
Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level r...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2014-11, Vol.48 (22), p.13549-13556 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13556 |
---|---|
container_issue | 22 |
container_start_page | 13549 |
container_title | Environmental science & technology |
container_volume | 48 |
creator | Williamson, Adam J Morris, Katherine Law, Gareth T. W Rizoulis, Athanasios Charnock, John M Lloyd, Jonathan R |
description | Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere. |
doi_str_mv | 10.1021/es5017125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660394096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660394096</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-7ef93a63b7ffaff7ee90340a1fc2104674c1904e3b18552c47d5332601bd07d63</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuAgFrtWL_wDEhChvZh6TjKZzHhXFq0LLUKx6t1wJh-QOjtZkx3Bf2_Wrq3UG69C4OHNyXkZe4FwiiDwjcsKUKNQj9gClYBKtQofswUAyqqTzddD9jTnGwAQEton7FAoIbHVasH8ZTApDoFGfuXsbLYhTjx6fn38eXXC58m6xM_GbzSGyfFlnGzYifyWr9abMRj6feM-Jn5FNkQqAT8c_0J56_i5izbkTcw0PmMHnsbsnu_PI3b9_t2n5Yfq4uP5anl2UVFd47bSzneSGjlo78l77VwHsgZCbwRC3ejaYAe1kwO2SglTa6ukFA3gYEHbRh6x49vcTYrfZ5e3_Tpk48aRJhfn3GPTgOxq6P6HiqZwjVjoqwf0Js5pKh_ZKY1lsFYVdXKrykJzTs73mxTWlH72CP2up_6up2Jf7hPnYe3snfxTTAGv94CyodEnmkzI965sATuJ945M_muqfx78BQ6Yo5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627146785</pqid></control><display><type>article</type><title>Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Williamson, Adam J ; Morris, Katherine ; Law, Gareth T. W ; Rizoulis, Athanasios ; Charnock, John M ; Lloyd, Jonathan R</creator><creatorcontrib>Williamson, Adam J ; Morris, Katherine ; Law, Gareth T. W ; Rizoulis, Athanasios ; Charnock, John M ; Lloyd, Jonathan R</creatorcontrib><description>Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es5017125</identifier><identifier>PMID: 25231875</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Absorption, Radiation ; Applied sciences ; Bacteroidetes - genetics ; Bacteroidetes - metabolism ; Base Sequence ; Biodegradation, Environmental ; Biogeochemistry ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; England ; Exact sciences and technology ; Ferric Compounds - metabolism ; Ferrosoferric Oxide - metabolism ; Firmicutes ; Geologic Sediments - chemistry ; Gram-positive bacteria ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Nitrates - metabolism ; Oxidation-Reduction ; Pollution ; Pollution, environment geology ; Radioactive Waste - analysis ; Radioactive wastes ; RNA, Ribosomal, 16S - genetics ; Sediments ; Sequence Analysis, DNA ; Sorption ; Uranium ; Uranium - chemistry ; Uranium - metabolism ; Wastes ; X-Ray Absorption Spectroscopy</subject><ispartof>Environmental science & technology, 2014-11, Vol.48 (22), p.13549-13556</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 18, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-7ef93a63b7ffaff7ee90340a1fc2104674c1904e3b18552c47d5332601bd07d63</citedby><cites>FETCH-LOGICAL-a441t-7ef93a63b7ffaff7ee90340a1fc2104674c1904e3b18552c47d5332601bd07d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es5017125$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es5017125$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29041931$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25231875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williamson, Adam J</creatorcontrib><creatorcontrib>Morris, Katherine</creatorcontrib><creatorcontrib>Law, Gareth T. W</creatorcontrib><creatorcontrib>Rizoulis, Athanasios</creatorcontrib><creatorcontrib>Charnock, John M</creatorcontrib><creatorcontrib>Lloyd, Jonathan R</creatorcontrib><title>Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.</description><subject>Absorption, Radiation</subject><subject>Applied sciences</subject><subject>Bacteroidetes - genetics</subject><subject>Bacteroidetes - metabolism</subject><subject>Base Sequence</subject><subject>Biodegradation, Environmental</subject><subject>Biogeochemistry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>England</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - metabolism</subject><subject>Ferrosoferric Oxide - metabolism</subject><subject>Firmicutes</subject><subject>Geologic Sediments - chemistry</subject><subject>Gram-positive bacteria</subject><subject>Hydrogen-Ion Concentration</subject><subject>Molecular Sequence Data</subject><subject>Nitrates - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Radioactive Waste - analysis</subject><subject>Radioactive wastes</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Sediments</subject><subject>Sequence Analysis, DNA</subject><subject>Sorption</subject><subject>Uranium</subject><subject>Uranium - chemistry</subject><subject>Uranium - metabolism</subject><subject>Wastes</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNqN0V1rFDEUBuAgFrtWL_wDEhChvZh6TjKZzHhXFq0LLUKx6t1wJh-QOjtZkx3Bf2_Wrq3UG69C4OHNyXkZe4FwiiDwjcsKUKNQj9gClYBKtQofswUAyqqTzddD9jTnGwAQEton7FAoIbHVasH8ZTApDoFGfuXsbLYhTjx6fn38eXXC58m6xM_GbzSGyfFlnGzYifyWr9abMRj6feM-Jn5FNkQqAT8c_0J56_i5izbkTcw0PmMHnsbsnu_PI3b9_t2n5Yfq4uP5anl2UVFd47bSzneSGjlo78l77VwHsgZCbwRC3ejaYAe1kwO2SglTa6ukFA3gYEHbRh6x49vcTYrfZ5e3_Tpk48aRJhfn3GPTgOxq6P6HiqZwjVjoqwf0Js5pKh_ZKY1lsFYVdXKrykJzTs73mxTWlH72CP2up_6up2Jf7hPnYe3snfxTTAGv94CyodEnmkzI965sATuJ945M_muqfx78BQ6Yo5g</recordid><startdate>20141118</startdate><enddate>20141118</enddate><creator>Williamson, Adam J</creator><creator>Morris, Katherine</creator><creator>Law, Gareth T. W</creator><creator>Rizoulis, Athanasios</creator><creator>Charnock, John M</creator><creator>Lloyd, Jonathan R</creator><general>American Chemical Society</general><scope>N~.</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20141118</creationdate><title>Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal</title><author>Williamson, Adam J ; Morris, Katherine ; Law, Gareth T. W ; Rizoulis, Athanasios ; Charnock, John M ; Lloyd, Jonathan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-7ef93a63b7ffaff7ee90340a1fc2104674c1904e3b18552c47d5332601bd07d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorption, Radiation</topic><topic>Applied sciences</topic><topic>Bacteroidetes - genetics</topic><topic>Bacteroidetes - metabolism</topic><topic>Base Sequence</topic><topic>Biodegradation, Environmental</topic><topic>Biogeochemistry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>England</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - metabolism</topic><topic>Ferrosoferric Oxide - metabolism</topic><topic>Firmicutes</topic><topic>Geologic Sediments - chemistry</topic><topic>Gram-positive bacteria</topic><topic>Hydrogen-Ion Concentration</topic><topic>Molecular Sequence Data</topic><topic>Nitrates - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Radioactive Waste - analysis</topic><topic>Radioactive wastes</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Sediments</topic><topic>Sequence Analysis, DNA</topic><topic>Sorption</topic><topic>Uranium</topic><topic>Uranium - chemistry</topic><topic>Uranium - metabolism</topic><topic>Wastes</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williamson, Adam J</creatorcontrib><creatorcontrib>Morris, Katherine</creatorcontrib><creatorcontrib>Law, Gareth T. W</creatorcontrib><creatorcontrib>Rizoulis, Athanasios</creatorcontrib><creatorcontrib>Charnock, John M</creatorcontrib><creatorcontrib>Lloyd, Jonathan R</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williamson, Adam J</au><au>Morris, Katherine</au><au>Law, Gareth T. W</au><au>Rizoulis, Athanasios</au><au>Charnock, John M</au><au>Lloyd, Jonathan R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-11-18</date><risdate>2014</risdate><volume>48</volume><issue>22</issue><spage>13549</spage><epage>13556</epage><pages>13549-13556</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10–10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25231875</pmid><doi>10.1021/es5017125</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2014-11, Vol.48 (22), p.13549-13556 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660394096 |
source | MEDLINE; American Chemical Society Journals |
subjects | Absorption, Radiation Applied sciences Bacteroidetes - genetics Bacteroidetes - metabolism Base Sequence Biodegradation, Environmental Biogeochemistry Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics England Exact sciences and technology Ferric Compounds - metabolism Ferrosoferric Oxide - metabolism Firmicutes Geologic Sediments - chemistry Gram-positive bacteria Hydrogen-Ion Concentration Molecular Sequence Data Nitrates - metabolism Oxidation-Reduction Pollution Pollution, environment geology Radioactive Waste - analysis Radioactive wastes RNA, Ribosomal, 16S - genetics Sediments Sequence Analysis, DNA Sorption Uranium Uranium - chemistry Uranium - metabolism Wastes X-Ray Absorption Spectroscopy |
title | Microbial Reduction of U(VI) under Alkaline Conditions: Implications for Radioactive Waste Geodisposal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20Reduction%20of%20U(VI)%20under%20Alkaline%20Conditions:%20Implications%20for%20Radioactive%20Waste%20Geodisposal&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Williamson,%20Adam%20J&rft.date=2014-11-18&rft.volume=48&rft.issue=22&rft.spage=13549&rft.epage=13556&rft.pages=13549-13556&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es5017125&rft_dat=%3Cproquest_cross%3E1660394096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627146785&rft_id=info:pmid/25231875&rfr_iscdi=true |