Regulation of Pituitary Tumor Transforming Gene (PTTG) Expression and Phosphorylation in Thyroid Cells

Human pituitary tumor transforming gene (hPTTG) is a multifunctional proto-oncogene implicated in the initiation and progression of several tumors. Phosphorylation of hPTTG is mediated by cyclin-dependent kinase 2 (CDC2), whereas cellular expression is regulated by specificity protein 1 (SP1). The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2013-11, Vol.154 (11), p.4408-4422
Hauptverfasser: Lewy, Gregory D, Ryan, Gavin A, Read, Martin L, Fong, Jim C. W, Poole, Vikki, Seed, Robert I, Sharma, Neil, Smith, Vicki E, Kwan, Perkin P. K, Stewart, Sarah L, Bacon, Andrea, Warfield, Adrian, Franklyn, Jayne A, McCabe, Christopher J, Boelaert, Kristien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4422
container_issue 11
container_start_page 4408
container_title Endocrinology (Philadelphia)
container_volume 154
creator Lewy, Gregory D
Ryan, Gavin A
Read, Martin L
Fong, Jim C. W
Poole, Vikki
Seed, Robert I
Sharma, Neil
Smith, Vicki E
Kwan, Perkin P. K
Stewart, Sarah L
Bacon, Andrea
Warfield, Adrian
Franklyn, Jayne A
McCabe, Christopher J
Boelaert, Kristien
description Human pituitary tumor transforming gene (hPTTG) is a multifunctional proto-oncogene implicated in the initiation and progression of several tumors. Phosphorylation of hPTTG is mediated by cyclin-dependent kinase 2 (CDC2), whereas cellular expression is regulated by specificity protein 1 (SP1). The mechanisms underlying hPTTG propagation of aberrant thyroid cell growth have not been fully defined. We set out to investigate the interplay between hPTTG and growth factors, as well as the effects of phosphorylation and SP1 regulation on hPTTG expression and function. In our study, epidermal growth factor (EGF), TGFα, and IGF-1 induced hPTTG expression and phosphorylation in thyroid cells, which was associated with activation of MAPK and phosphoinositide 3-kinase. Growth factors induced hPTTG independently of CDC2 and SP1 in thyroid carcinoma cells. Strikingly, CDC2 depletion in TPC-1 cells resulted in enhanced expression and phosphorylation of hPTTG and reduced cellular proliferation. In reciprocal experiments, hPTTG overexpression induced EGF, IGF-1, and TGFα mRNAs in primary human thyrocytes. Treatment of primary human thyrocytes with conditioned media derived from hPTTG-transfected cells resulted in autocrine upregulation of hPTTG protein, which was ameliorated by growth factor depletion or growth factor receptor tyrosine kinase inhibitors. A transgenic murine model of thyroid targeted hPTTG overexpression (hPTTG-Tg) (FVB/N strain, both sexes) demonstrated smaller thyroids with reduced cellular proliferation and enhanced secretion of Egf. In contrast, Pttg−/− knockout mice (c57BL6 strain, both sexes) showed reduced thyroidal Egf mRNA expression. These results define hPTTG as having a central role in thyroid autocrine signaling mechanisms via growth factors, with profound implications for promotion of transformed cell growth.
doi_str_mv 10.1210/en.2012-2156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660393591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2012-2156</oup_id><sourcerecordid>1660393591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-69d1dbddc74504a2df69ff53ef0d33c5ef99f246ec11000ba70b6627f711db7d3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModlu981oCIq3g1Jwkk2wuZamrUHCR8XrITpJuykyyJjPg_nuz7mhBFK9C4Dnv-XgQegHkGiiQdzZcUwK0olCLR2gBiteVBEkeowUhwCpJqTxD5znfly_nnD1FZ5QthSwFC-S-2Lup16OPAUeHN36c_KjTATfTEBNukg7ZxTT4cIfXNlh8tWma9Rt8832fbM7HMh0M3uxi3u9iOsxRPuBmd0jRG7yyfZ-foSdO99k-n98L9PXDTbP6WN1-Xn9avb-tOq7EWAllwGyN6SSvCdfUOKGcq5l1xDDW1dYp5SgXtgMghGy1JFshqHQSSp007AJdnXL3KX6bbB7bweeuTKCDjVNuQQjCFKsV_B8tp1JKci4L-uoP9D5OKZRFWgaMCLoETgr19kR1KeacrGv3yQ_lli2Q9qiqtaE9qmqPqgr-cg6dtoM1v-FfbgrwegZ07nTviorO5wdOKuASloW7PHFx2v-rZTW3ZCfSBhO75IP9KfFhm78O-gM7q7fR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130628140</pqid></control><display><type>article</type><title>Regulation of Pituitary Tumor Transforming Gene (PTTG) Expression and Phosphorylation in Thyroid Cells</title><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Journals@Ovid Complete</source><creator>Lewy, Gregory D ; Ryan, Gavin A ; Read, Martin L ; Fong, Jim C. W ; Poole, Vikki ; Seed, Robert I ; Sharma, Neil ; Smith, Vicki E ; Kwan, Perkin P. K ; Stewart, Sarah L ; Bacon, Andrea ; Warfield, Adrian ; Franklyn, Jayne A ; McCabe, Christopher J ; Boelaert, Kristien</creator><creatorcontrib>Lewy, Gregory D ; Ryan, Gavin A ; Read, Martin L ; Fong, Jim C. W ; Poole, Vikki ; Seed, Robert I ; Sharma, Neil ; Smith, Vicki E ; Kwan, Perkin P. K ; Stewart, Sarah L ; Bacon, Andrea ; Warfield, Adrian ; Franklyn, Jayne A ; McCabe, Christopher J ; Boelaert, Kristien</creatorcontrib><description>Human pituitary tumor transforming gene (hPTTG) is a multifunctional proto-oncogene implicated in the initiation and progression of several tumors. Phosphorylation of hPTTG is mediated by cyclin-dependent kinase 2 (CDC2), whereas cellular expression is regulated by specificity protein 1 (SP1). The mechanisms underlying hPTTG propagation of aberrant thyroid cell growth have not been fully defined. We set out to investigate the interplay between hPTTG and growth factors, as well as the effects of phosphorylation and SP1 regulation on hPTTG expression and function. In our study, epidermal growth factor (EGF), TGFα, and IGF-1 induced hPTTG expression and phosphorylation in thyroid cells, which was associated with activation of MAPK and phosphoinositide 3-kinase. Growth factors induced hPTTG independently of CDC2 and SP1 in thyroid carcinoma cells. Strikingly, CDC2 depletion in TPC-1 cells resulted in enhanced expression and phosphorylation of hPTTG and reduced cellular proliferation. In reciprocal experiments, hPTTG overexpression induced EGF, IGF-1, and TGFα mRNAs in primary human thyrocytes. Treatment of primary human thyrocytes with conditioned media derived from hPTTG-transfected cells resulted in autocrine upregulation of hPTTG protein, which was ameliorated by growth factor depletion or growth factor receptor tyrosine kinase inhibitors. A transgenic murine model of thyroid targeted hPTTG overexpression (hPTTG-Tg) (FVB/N strain, both sexes) demonstrated smaller thyroids with reduced cellular proliferation and enhanced secretion of Egf. In contrast, Pttg−/− knockout mice (c57BL6 strain, both sexes) showed reduced thyroidal Egf mRNA expression. These results define hPTTG as having a central role in thyroid autocrine signaling mechanisms via growth factors, with profound implications for promotion of transformed cell growth.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2012-2156</identifier><identifier>PMID: 23867215</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Animal models ; Animals ; Autocrine Communication ; Autocrine signalling ; Biological and medical sciences ; Brain tumors ; Cdc2 protein ; CDC2 Protein Kinase - genetics ; CDC2 Protein Kinase - metabolism ; Cell activation ; Cell growth ; Cell Line ; Cell Proliferation ; Cricetinae ; Cyclin-dependent kinase ; Cyclin-dependent kinase 2 ; Cyclin-dependent kinases ; Depletion ; Epidermal growth factor ; Epidermal Growth Factor - genetics ; Epidermal Growth Factor - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation - physiology ; Growth factors ; Humans ; Immunoglobulins - genetics ; Immunoglobulins - metabolism ; Insulin-like growth factor I ; Insulin-like growth factors ; Kinases ; MAP kinase ; Mice ; Mice, Transgenic ; Paracrine Communication ; Phosphorylation ; Pituitary ; Pituitary tumor-transforming proteins ; Protein-tyrosine kinase receptors ; Proteins ; Securin - genetics ; Securin - metabolism ; Sp1 protein ; Thyrocytes ; Thyroid ; Thyroid carcinoma ; Thyroid gland ; Thyroid Gland - cytology ; Transforming growth factor-a ; Tumors ; Tyrosine ; Vertebrates: endocrinology</subject><ispartof>Endocrinology (Philadelphia), 2013-11, Vol.154 (11), p.4408-4422</ispartof><rights>Copyright © 2013 by The Endocrine Society</rights><rights>Copyright © 2013 by The Endocrine Society 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-69d1dbddc74504a2df69ff53ef0d33c5ef99f246ec11000ba70b6627f711db7d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27914718$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23867215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewy, Gregory D</creatorcontrib><creatorcontrib>Ryan, Gavin A</creatorcontrib><creatorcontrib>Read, Martin L</creatorcontrib><creatorcontrib>Fong, Jim C. W</creatorcontrib><creatorcontrib>Poole, Vikki</creatorcontrib><creatorcontrib>Seed, Robert I</creatorcontrib><creatorcontrib>Sharma, Neil</creatorcontrib><creatorcontrib>Smith, Vicki E</creatorcontrib><creatorcontrib>Kwan, Perkin P. K</creatorcontrib><creatorcontrib>Stewart, Sarah L</creatorcontrib><creatorcontrib>Bacon, Andrea</creatorcontrib><creatorcontrib>Warfield, Adrian</creatorcontrib><creatorcontrib>Franklyn, Jayne A</creatorcontrib><creatorcontrib>McCabe, Christopher J</creatorcontrib><creatorcontrib>Boelaert, Kristien</creatorcontrib><title>Regulation of Pituitary Tumor Transforming Gene (PTTG) Expression and Phosphorylation in Thyroid Cells</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Human pituitary tumor transforming gene (hPTTG) is a multifunctional proto-oncogene implicated in the initiation and progression of several tumors. Phosphorylation of hPTTG is mediated by cyclin-dependent kinase 2 (CDC2), whereas cellular expression is regulated by specificity protein 1 (SP1). The mechanisms underlying hPTTG propagation of aberrant thyroid cell growth have not been fully defined. We set out to investigate the interplay between hPTTG and growth factors, as well as the effects of phosphorylation and SP1 regulation on hPTTG expression and function. In our study, epidermal growth factor (EGF), TGFα, and IGF-1 induced hPTTG expression and phosphorylation in thyroid cells, which was associated with activation of MAPK and phosphoinositide 3-kinase. Growth factors induced hPTTG independently of CDC2 and SP1 in thyroid carcinoma cells. Strikingly, CDC2 depletion in TPC-1 cells resulted in enhanced expression and phosphorylation of hPTTG and reduced cellular proliferation. In reciprocal experiments, hPTTG overexpression induced EGF, IGF-1, and TGFα mRNAs in primary human thyrocytes. Treatment of primary human thyrocytes with conditioned media derived from hPTTG-transfected cells resulted in autocrine upregulation of hPTTG protein, which was ameliorated by growth factor depletion or growth factor receptor tyrosine kinase inhibitors. A transgenic murine model of thyroid targeted hPTTG overexpression (hPTTG-Tg) (FVB/N strain, both sexes) demonstrated smaller thyroids with reduced cellular proliferation and enhanced secretion of Egf. In contrast, Pttg−/− knockout mice (c57BL6 strain, both sexes) showed reduced thyroidal Egf mRNA expression. These results define hPTTG as having a central role in thyroid autocrine signaling mechanisms via growth factors, with profound implications for promotion of transformed cell growth.</description><subject>Animal models</subject><subject>Animals</subject><subject>Autocrine Communication</subject><subject>Autocrine signalling</subject><subject>Biological and medical sciences</subject><subject>Brain tumors</subject><subject>Cdc2 protein</subject><subject>CDC2 Protein Kinase - genetics</subject><subject>CDC2 Protein Kinase - metabolism</subject><subject>Cell activation</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cricetinae</subject><subject>Cyclin-dependent kinase</subject><subject>Cyclin-dependent kinase 2</subject><subject>Cyclin-dependent kinases</subject><subject>Depletion</subject><subject>Epidermal growth factor</subject><subject>Epidermal Growth Factor - genetics</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - physiology</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immunoglobulins - genetics</subject><subject>Immunoglobulins - metabolism</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-like growth factors</subject><subject>Kinases</subject><subject>MAP kinase</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Paracrine Communication</subject><subject>Phosphorylation</subject><subject>Pituitary</subject><subject>Pituitary tumor-transforming proteins</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Proteins</subject><subject>Securin - genetics</subject><subject>Securin - metabolism</subject><subject>Sp1 protein</subject><subject>Thyrocytes</subject><subject>Thyroid</subject><subject>Thyroid carcinoma</subject><subject>Thyroid gland</subject><subject>Thyroid Gland - cytology</subject><subject>Transforming growth factor-a</subject><subject>Tumors</subject><subject>Tyrosine</subject><subject>Vertebrates: endocrinology</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModlu981oCIq3g1Jwkk2wuZamrUHCR8XrITpJuykyyJjPg_nuz7mhBFK9C4Dnv-XgQegHkGiiQdzZcUwK0olCLR2gBiteVBEkeowUhwCpJqTxD5znfly_nnD1FZ5QthSwFC-S-2Lup16OPAUeHN36c_KjTATfTEBNukg7ZxTT4cIfXNlh8tWma9Rt8832fbM7HMh0M3uxi3u9iOsxRPuBmd0jRG7yyfZ-foSdO99k-n98L9PXDTbP6WN1-Xn9avb-tOq7EWAllwGyN6SSvCdfUOKGcq5l1xDDW1dYp5SgXtgMghGy1JFshqHQSSp007AJdnXL3KX6bbB7bweeuTKCDjVNuQQjCFKsV_B8tp1JKci4L-uoP9D5OKZRFWgaMCLoETgr19kR1KeacrGv3yQ_lli2Q9qiqtaE9qmqPqgr-cg6dtoM1v-FfbgrwegZ07nTviorO5wdOKuASloW7PHFx2v-rZTW3ZCfSBhO75IP9KfFhm78O-gM7q7fR</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Lewy, Gregory D</creator><creator>Ryan, Gavin A</creator><creator>Read, Martin L</creator><creator>Fong, Jim C. W</creator><creator>Poole, Vikki</creator><creator>Seed, Robert I</creator><creator>Sharma, Neil</creator><creator>Smith, Vicki E</creator><creator>Kwan, Perkin P. K</creator><creator>Stewart, Sarah L</creator><creator>Bacon, Andrea</creator><creator>Warfield, Adrian</creator><creator>Franklyn, Jayne A</creator><creator>McCabe, Christopher J</creator><creator>Boelaert, Kristien</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope></search><sort><creationdate>20131101</creationdate><title>Regulation of Pituitary Tumor Transforming Gene (PTTG) Expression and Phosphorylation in Thyroid Cells</title><author>Lewy, Gregory D ; Ryan, Gavin A ; Read, Martin L ; Fong, Jim C. W ; Poole, Vikki ; Seed, Robert I ; Sharma, Neil ; Smith, Vicki E ; Kwan, Perkin P. K ; Stewart, Sarah L ; Bacon, Andrea ; Warfield, Adrian ; Franklyn, Jayne A ; McCabe, Christopher J ; Boelaert, Kristien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-69d1dbddc74504a2df69ff53ef0d33c5ef99f246ec11000ba70b6627f711db7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Autocrine Communication</topic><topic>Autocrine signalling</topic><topic>Biological and medical sciences</topic><topic>Brain tumors</topic><topic>Cdc2 protein</topic><topic>CDC2 Protein Kinase - genetics</topic><topic>CDC2 Protein Kinase - metabolism</topic><topic>Cell activation</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cricetinae</topic><topic>Cyclin-dependent kinase</topic><topic>Cyclin-dependent kinase 2</topic><topic>Cyclin-dependent kinases</topic><topic>Depletion</topic><topic>Epidermal growth factor</topic><topic>Epidermal Growth Factor - genetics</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - physiology</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immunoglobulins - genetics</topic><topic>Immunoglobulins - metabolism</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-like growth factors</topic><topic>Kinases</topic><topic>MAP kinase</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Paracrine Communication</topic><topic>Phosphorylation</topic><topic>Pituitary</topic><topic>Pituitary tumor-transforming proteins</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Proteins</topic><topic>Securin - genetics</topic><topic>Securin - metabolism</topic><topic>Sp1 protein</topic><topic>Thyrocytes</topic><topic>Thyroid</topic><topic>Thyroid carcinoma</topic><topic>Thyroid gland</topic><topic>Thyroid Gland - cytology</topic><topic>Transforming growth factor-a</topic><topic>Tumors</topic><topic>Tyrosine</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewy, Gregory D</creatorcontrib><creatorcontrib>Ryan, Gavin A</creatorcontrib><creatorcontrib>Read, Martin L</creatorcontrib><creatorcontrib>Fong, Jim C. W</creatorcontrib><creatorcontrib>Poole, Vikki</creatorcontrib><creatorcontrib>Seed, Robert I</creatorcontrib><creatorcontrib>Sharma, Neil</creatorcontrib><creatorcontrib>Smith, Vicki E</creatorcontrib><creatorcontrib>Kwan, Perkin P. K</creatorcontrib><creatorcontrib>Stewart, Sarah L</creatorcontrib><creatorcontrib>Bacon, Andrea</creatorcontrib><creatorcontrib>Warfield, Adrian</creatorcontrib><creatorcontrib>Franklyn, Jayne A</creatorcontrib><creatorcontrib>McCabe, Christopher J</creatorcontrib><creatorcontrib>Boelaert, Kristien</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewy, Gregory D</au><au>Ryan, Gavin A</au><au>Read, Martin L</au><au>Fong, Jim C. W</au><au>Poole, Vikki</au><au>Seed, Robert I</au><au>Sharma, Neil</au><au>Smith, Vicki E</au><au>Kwan, Perkin P. K</au><au>Stewart, Sarah L</au><au>Bacon, Andrea</au><au>Warfield, Adrian</au><au>Franklyn, Jayne A</au><au>McCabe, Christopher J</au><au>Boelaert, Kristien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Pituitary Tumor Transforming Gene (PTTG) Expression and Phosphorylation in Thyroid Cells</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>154</volume><issue>11</issue><spage>4408</spage><epage>4422</epage><pages>4408-4422</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Human pituitary tumor transforming gene (hPTTG) is a multifunctional proto-oncogene implicated in the initiation and progression of several tumors. Phosphorylation of hPTTG is mediated by cyclin-dependent kinase 2 (CDC2), whereas cellular expression is regulated by specificity protein 1 (SP1). The mechanisms underlying hPTTG propagation of aberrant thyroid cell growth have not been fully defined. We set out to investigate the interplay between hPTTG and growth factors, as well as the effects of phosphorylation and SP1 regulation on hPTTG expression and function. In our study, epidermal growth factor (EGF), TGFα, and IGF-1 induced hPTTG expression and phosphorylation in thyroid cells, which was associated with activation of MAPK and phosphoinositide 3-kinase. Growth factors induced hPTTG independently of CDC2 and SP1 in thyroid carcinoma cells. Strikingly, CDC2 depletion in TPC-1 cells resulted in enhanced expression and phosphorylation of hPTTG and reduced cellular proliferation. In reciprocal experiments, hPTTG overexpression induced EGF, IGF-1, and TGFα mRNAs in primary human thyrocytes. Treatment of primary human thyrocytes with conditioned media derived from hPTTG-transfected cells resulted in autocrine upregulation of hPTTG protein, which was ameliorated by growth factor depletion or growth factor receptor tyrosine kinase inhibitors. A transgenic murine model of thyroid targeted hPTTG overexpression (hPTTG-Tg) (FVB/N strain, both sexes) demonstrated smaller thyroids with reduced cellular proliferation and enhanced secretion of Egf. In contrast, Pttg−/− knockout mice (c57BL6 strain, both sexes) showed reduced thyroidal Egf mRNA expression. These results define hPTTG as having a central role in thyroid autocrine signaling mechanisms via growth factors, with profound implications for promotion of transformed cell growth.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>23867215</pmid><doi>10.1210/en.2012-2156</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2013-11, Vol.154 (11), p.4408-4422
issn 0013-7227
1945-7170
language eng
recordid cdi_proquest_miscellaneous_1660393591
source MEDLINE; Oxford Academic Journals (OUP); Alma/SFX Local Collection; EZB Electronic Journals Library; Journals@Ovid Complete
subjects Animal models
Animals
Autocrine Communication
Autocrine signalling
Biological and medical sciences
Brain tumors
Cdc2 protein
CDC2 Protein Kinase - genetics
CDC2 Protein Kinase - metabolism
Cell activation
Cell growth
Cell Line
Cell Proliferation
Cricetinae
Cyclin-dependent kinase
Cyclin-dependent kinase 2
Cyclin-dependent kinases
Depletion
Epidermal growth factor
Epidermal Growth Factor - genetics
Epidermal Growth Factor - metabolism
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation - physiology
Growth factors
Humans
Immunoglobulins - genetics
Immunoglobulins - metabolism
Insulin-like growth factor I
Insulin-like growth factors
Kinases
MAP kinase
Mice
Mice, Transgenic
Paracrine Communication
Phosphorylation
Pituitary
Pituitary tumor-transforming proteins
Protein-tyrosine kinase receptors
Proteins
Securin - genetics
Securin - metabolism
Sp1 protein
Thyrocytes
Thyroid
Thyroid carcinoma
Thyroid gland
Thyroid Gland - cytology
Transforming growth factor-a
Tumors
Tyrosine
Vertebrates: endocrinology
title Regulation of Pituitary Tumor Transforming Gene (PTTG) Expression and Phosphorylation in Thyroid Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Pituitary%20Tumor%20Transforming%20Gene%20(PTTG)%20Expression%20and%20Phosphorylation%20in%20Thyroid%20Cells&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Lewy,%20Gregory%20D&rft.date=2013-11-01&rft.volume=154&rft.issue=11&rft.spage=4408&rft.epage=4422&rft.pages=4408-4422&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2012-2156&rft_dat=%3Cproquest_cross%3E1660393591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130628140&rft_id=info:pmid/23867215&rft_oup_id=10.1210/en.2012-2156&rfr_iscdi=true