Anti-inflammatory activity of methyl ferulate isolated from Stemona tuberosa Lour
To evaluate the anti-inflammatory activity of methyl ferulate (MF) isolated from the roots of Stemona tuberosa (S. tuberosa) Lour (Stemonaceae) in lipopolysaccharide activated macrophage cells. Methanol extracts of a root powder of S. tuberosa were prepared for isolation of a potential anti-inflamma...
Gespeichert in:
Veröffentlicht in: | Asian Pacific journal of tropical medicine 2014-09, Vol.7, p.S327-S331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To evaluate the anti-inflammatory activity of methyl ferulate (MF) isolated from the roots of Stemona tuberosa (S. tuberosa) Lour (Stemonaceae) in lipopolysaccharide activated macrophage cells.
Methanol extracts of a root powder of S. tuberosa were prepared for isolation of a potential anti-inflammatory agent using ultrasound extraction combined with repeated chromatography on silica gel. After the quantitative analyses, anti-inflammatory activity of the isolated compound was evaluated by measurement of cytokine release, NO generation, expression of cyclooxygenase-2 and phosphorylation of mitogen activated protein kinases including p38 and c-Jun NH2-terminal kinase using quantitative kits and Western blotting with specific antibodies.
The isolation process yielded a potential anti-inflammatory compound with a purity level of 99% determined by high performance liquid chromatography. The compound was identified as MF by using nuclear magnetic resonance. MF strongly inhibited the release of pro-inflammatory cytokines from macrophages, including IL-6, TNFα, IFNγ, yet it did not affect the anti-inflammatory cytokine IL-10. Phosphorylation of p38 and c-Jun NH2-terminal kinase were clearly reduced in MF-treated macrophages stimulated with lipopolysaccharide. cyclooxygenase-2 expression and NO generation by macrophages were also suppressed when the cells were treated with MF.
The data suggested that MF is a possible inhibitor of the mitogen activated phosphor kinase pathway and could be a potential anti-inflammatory agent isolated for the first time in medicinal plant S. tuberosa. |
---|---|
ISSN: | 1995-7645 2352-4146 |
DOI: | 10.1016/S1995-7645(14)60254-6 |