Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals

SCOPE: Vitamin D₃, its biologically most active metabolite 1α,25‐dihydroxyvitamin D₃ (1,25(OH)₂D₃), and the vitamin D receptor (VDR) are important for adipose tissue biology. METHODS AND RESULTS: We extrapolated genomic VDR association loci in adipocytes from 55 conserved genome‐wide VDR‐binding sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular nutrition & food research 2014-10, Vol.58 (10), p.2036-2045
Hauptverfasser: Ryynänen, Jussi, Neme, Antonio, Tuomainen, Tomi‐Pekka, Virtanen, Jyrki K, Voutilainen, Sari, Nurmi, Tarja, Mello, Vanessa D. F, Uusitupa, Matti, Carlberg, Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2045
container_issue 10
container_start_page 2036
container_title Molecular nutrition & food research
container_volume 58
creator Ryynänen, Jussi
Neme, Antonio
Tuomainen, Tomi‐Pekka
Virtanen, Jyrki K
Voutilainen, Sari
Nurmi, Tarja
Mello, Vanessa D. F
Uusitupa, Matti
Carlberg, Carsten
description SCOPE: Vitamin D₃, its biologically most active metabolite 1α,25‐dihydroxyvitamin D₃ (1,25(OH)₂D₃), and the vitamin D receptor (VDR) are important for adipose tissue biology. METHODS AND RESULTS: We extrapolated genomic VDR association loci in adipocytes from 55 conserved genome‐wide VDR‐binding sites in nonfat tissues. Taking the genes DUSP10, TRAK1, NRIP1, and THBD as examples, we confirmed the predicted VDR binding sites upstream of their transcription start sites and showed rapid mRNA up‐regulation of all four genes in SGBS human pre‐adipocytes. Using adipose tissue biopsy samples from 47 participants of a 5‐month vitamin D₃ intervention study, we demonstrated that all four primary VDR target genes can serve as biomarkers for the vitamin D₃ responsiveness of human individuals. Changes in DUSP10 gene expression appear to be the most comprehensive marker, while THBD mRNA changes characterized a rather different group of study participants. CONCLUSION: We present a new approach to predict vitamin D target genes based on conserved genomic VDR‐binding sites. Using human adipocytes as examples, we show that such ubiquitous VDR target genes can be used as markers for the individual's response to a supplementation with vitamin D₃.
doi_str_mv 10.1002/mnfr.201400291
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660390842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1586098397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6042-2d1d2447418402f54c29fc7dffb2e7159d3da471b02423e8a1005fb502c261873</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEoqVw5Qi5IHHJYo_txDmiLd0ilUWCdjla3mS8a0ji1E5K--9xlGXh1tOzpe89z_glyWtKFpQQ-NB2xi-AUB4vJX2SnNKcsoxTxp4ezyBOkhch_CSEUeDseXICvCwEFOw0uV3udbfDkNouvbODbqOep4P2OxzSHXaY4n3vMQTruonRte1dwHSwIYyYtq6zg_PpsMf_7JHvXRcpZ9L92OrJWds7W4-6CS-TZyYKvjroWXJz8el6eZldfV19Xn68yqqccMigpjVwXnAqOQEjeAWlqYramC1gQUVZs1rzgm4JcGAodfwOYbaCQAU5lQU7S97Pub13tyOGQbU2VNg0ukM3BkXznLCSyOh-FBUyJ6Vk5ZS6mNHKuxA8GtV722r_oChRUyNqakQdG4mGN4fscdtifcT_VhCBdwdAh0o3xuuusuEfJ6WIWSJyfOZ-2wYfHnlWfVlffANg027ZbLNhwPujTftfKi9YIdSP9Uqt1pvNZnl9qaYF38680U7pnY-j3HyPuYIQIgmFkv0Bl0G75w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1586098397</pqid></control><display><type>article</type><title>Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ryynänen, Jussi ; Neme, Antonio ; Tuomainen, Tomi‐Pekka ; Virtanen, Jyrki K ; Voutilainen, Sari ; Nurmi, Tarja ; Mello, Vanessa D. F ; Uusitupa, Matti ; Carlberg, Carsten</creator><creatorcontrib>Ryynänen, Jussi ; Neme, Antonio ; Tuomainen, Tomi‐Pekka ; Virtanen, Jyrki K ; Voutilainen, Sari ; Nurmi, Tarja ; Mello, Vanessa D. F ; Uusitupa, Matti ; Carlberg, Carsten</creatorcontrib><description>SCOPE: Vitamin D₃, its biologically most active metabolite 1α,25‐dihydroxyvitamin D₃ (1,25(OH)₂D₃), and the vitamin D receptor (VDR) are important for adipose tissue biology. METHODS AND RESULTS: We extrapolated genomic VDR association loci in adipocytes from 55 conserved genome‐wide VDR‐binding sites in nonfat tissues. Taking the genes DUSP10, TRAK1, NRIP1, and THBD as examples, we confirmed the predicted VDR binding sites upstream of their transcription start sites and showed rapid mRNA up‐regulation of all four genes in SGBS human pre‐adipocytes. Using adipose tissue biopsy samples from 47 participants of a 5‐month vitamin D₃ intervention study, we demonstrated that all four primary VDR target genes can serve as biomarkers for the vitamin D₃ responsiveness of human individuals. Changes in DUSP10 gene expression appear to be the most comprehensive marker, while THBD mRNA changes characterized a rather different group of study participants. CONCLUSION: We present a new approach to predict vitamin D target genes based on conserved genomic VDR‐binding sites. Using human adipocytes as examples, we show that such ubiquitous VDR target genes can be used as markers for the individual's response to a supplementation with vitamin D₃.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.201400291</identifier><identifier>PMID: 24975273</identifier><language>eng</language><publisher>Weinheim: Wiley-VCH</publisher><subject>Adaptor Proteins, Signal Transducing - agonists ; Adaptor Proteins, Signal Transducing - chemistry ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Adaptor Proteins, Vesicular Transport - agonists ; Adaptor Proteins, Vesicular Transport - chemistry ; Adaptor Proteins, Vesicular Transport - genetics ; Adaptor Proteins, Vesicular Transport - metabolism ; adipocytes ; Adipose tissue ; Adipose Tissue - metabolism ; Adipose Tissue - pathology ; Aged ; binding sites ; Biological and medical sciences ; biomarkers ; Biomarkers - metabolism ; biopsy ; Calcitriol - metabolism ; Cell Line ; Cells, Cultured ; cholecalciferol ; Cholecalciferol - administration &amp; dosage ; Cholecalciferol - deficiency ; Cholecalciferol - metabolism ; Cholecalciferol - therapeutic use ; Chromatin immunoprecipitation ; Conserved Sequence ; Dietary Supplements ; Dual-Specificity Phosphatases - chemistry ; Dual-Specificity Phosphatases - genetics ; Dual-Specificity Phosphatases - metabolism ; Feeding. Feeding behavior ; Finland ; Fundamental and applied biological sciences. Psychology ; gene expression ; gene expression regulation ; genes ; Humans ; loci ; Male ; messenger RNA ; metabolites ; Mitogen-Activated Protein Kinase Phosphatases - chemistry ; Mitogen-Activated Protein Kinase Phosphatases - genetics ; Mitogen-Activated Protein Kinase Phosphatases - metabolism ; Nuclear Proteins - agonists ; Nuclear Proteins - chemistry ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Receptors, Calcitriol - agonists ; Receptors, Calcitriol - genetics ; Receptors, Calcitriol - metabolism ; RNA, Messenger - metabolism ; Seasons ; Thrombomodulin - agonists ; Thrombomodulin - chemistry ; Thrombomodulin - genetics ; Thrombomodulin - metabolism ; Up-Regulation ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Vitamin D ; Vitamin D Deficiency - diet therapy ; Vitamin D Deficiency - metabolism ; Vitamin D Deficiency - pathology ; Vitamin D receptor ; Vitamin D Response Element ; Vitamin D target genes</subject><ispartof>Molecular nutrition &amp; food research, 2014-10, Vol.58 (10), p.2036-2045</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6042-2d1d2447418402f54c29fc7dffb2e7159d3da471b02423e8a1005fb502c261873</citedby><cites>FETCH-LOGICAL-c6042-2d1d2447418402f54c29fc7dffb2e7159d3da471b02423e8a1005fb502c261873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.201400291$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.201400291$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28851405$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24975273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryynänen, Jussi</creatorcontrib><creatorcontrib>Neme, Antonio</creatorcontrib><creatorcontrib>Tuomainen, Tomi‐Pekka</creatorcontrib><creatorcontrib>Virtanen, Jyrki K</creatorcontrib><creatorcontrib>Voutilainen, Sari</creatorcontrib><creatorcontrib>Nurmi, Tarja</creatorcontrib><creatorcontrib>Mello, Vanessa D. F</creatorcontrib><creatorcontrib>Uusitupa, Matti</creatorcontrib><creatorcontrib>Carlberg, Carsten</creatorcontrib><title>Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals</title><title>Molecular nutrition &amp; food research</title><addtitle>Mol. Nutr. Food Res</addtitle><description>SCOPE: Vitamin D₃, its biologically most active metabolite 1α,25‐dihydroxyvitamin D₃ (1,25(OH)₂D₃), and the vitamin D receptor (VDR) are important for adipose tissue biology. METHODS AND RESULTS: We extrapolated genomic VDR association loci in adipocytes from 55 conserved genome‐wide VDR‐binding sites in nonfat tissues. Taking the genes DUSP10, TRAK1, NRIP1, and THBD as examples, we confirmed the predicted VDR binding sites upstream of their transcription start sites and showed rapid mRNA up‐regulation of all four genes in SGBS human pre‐adipocytes. Using adipose tissue biopsy samples from 47 participants of a 5‐month vitamin D₃ intervention study, we demonstrated that all four primary VDR target genes can serve as biomarkers for the vitamin D₃ responsiveness of human individuals. Changes in DUSP10 gene expression appear to be the most comprehensive marker, while THBD mRNA changes characterized a rather different group of study participants. CONCLUSION: We present a new approach to predict vitamin D target genes based on conserved genomic VDR‐binding sites. Using human adipocytes as examples, we show that such ubiquitous VDR target genes can be used as markers for the individual's response to a supplementation with vitamin D₃.</description><subject>Adaptor Proteins, Signal Transducing - agonists</subject><subject>Adaptor Proteins, Signal Transducing - chemistry</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Adaptor Proteins, Vesicular Transport - agonists</subject><subject>Adaptor Proteins, Vesicular Transport - chemistry</subject><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Adaptor Proteins, Vesicular Transport - metabolism</subject><subject>adipocytes</subject><subject>Adipose tissue</subject><subject>Adipose Tissue - metabolism</subject><subject>Adipose Tissue - pathology</subject><subject>Aged</subject><subject>binding sites</subject><subject>Biological and medical sciences</subject><subject>biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>biopsy</subject><subject>Calcitriol - metabolism</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>cholecalciferol</subject><subject>Cholecalciferol - administration &amp; dosage</subject><subject>Cholecalciferol - deficiency</subject><subject>Cholecalciferol - metabolism</subject><subject>Cholecalciferol - therapeutic use</subject><subject>Chromatin immunoprecipitation</subject><subject>Conserved Sequence</subject><subject>Dietary Supplements</subject><subject>Dual-Specificity Phosphatases - chemistry</subject><subject>Dual-Specificity Phosphatases - genetics</subject><subject>Dual-Specificity Phosphatases - metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>Finland</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>Humans</subject><subject>loci</subject><subject>Male</subject><subject>messenger RNA</subject><subject>metabolites</subject><subject>Mitogen-Activated Protein Kinase Phosphatases - chemistry</subject><subject>Mitogen-Activated Protein Kinase Phosphatases - genetics</subject><subject>Mitogen-Activated Protein Kinase Phosphatases - metabolism</subject><subject>Nuclear Proteins - agonists</subject><subject>Nuclear Proteins - chemistry</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Receptors, Calcitriol - agonists</subject><subject>Receptors, Calcitriol - genetics</subject><subject>Receptors, Calcitriol - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Seasons</subject><subject>Thrombomodulin - agonists</subject><subject>Thrombomodulin - chemistry</subject><subject>Thrombomodulin - genetics</subject><subject>Thrombomodulin - metabolism</subject><subject>Up-Regulation</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Vitamin D</subject><subject>Vitamin D Deficiency - diet therapy</subject><subject>Vitamin D Deficiency - metabolism</subject><subject>Vitamin D Deficiency - pathology</subject><subject>Vitamin D receptor</subject><subject>Vitamin D Response Element</subject><subject>Vitamin D target genes</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhSMEoqVw5Qi5IHHJYo_txDmiLd0ilUWCdjla3mS8a0ji1E5K--9xlGXh1tOzpe89z_glyWtKFpQQ-NB2xi-AUB4vJX2SnNKcsoxTxp4ezyBOkhch_CSEUeDseXICvCwEFOw0uV3udbfDkNouvbODbqOep4P2OxzSHXaY4n3vMQTruonRte1dwHSwIYyYtq6zg_PpsMf_7JHvXRcpZ9L92OrJWds7W4-6CS-TZyYKvjroWXJz8el6eZldfV19Xn68yqqccMigpjVwXnAqOQEjeAWlqYramC1gQUVZs1rzgm4JcGAodfwOYbaCQAU5lQU7S97Pub13tyOGQbU2VNg0ukM3BkXznLCSyOh-FBUyJ6Vk5ZS6mNHKuxA8GtV722r_oChRUyNqakQdG4mGN4fscdtifcT_VhCBdwdAh0o3xuuusuEfJ6WIWSJyfOZ-2wYfHnlWfVlffANg027ZbLNhwPujTftfKi9YIdSP9Uqt1pvNZnl9qaYF38680U7pnY-j3HyPuYIQIgmFkv0Bl0G75w</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Ryynänen, Jussi</creator><creator>Neme, Antonio</creator><creator>Tuomainen, Tomi‐Pekka</creator><creator>Virtanen, Jyrki K</creator><creator>Voutilainen, Sari</creator><creator>Nurmi, Tarja</creator><creator>Mello, Vanessa D. F</creator><creator>Uusitupa, Matti</creator><creator>Carlberg, Carsten</creator><general>Wiley-VCH</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201410</creationdate><title>Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals</title><author>Ryynänen, Jussi ; Neme, Antonio ; Tuomainen, Tomi‐Pekka ; Virtanen, Jyrki K ; Voutilainen, Sari ; Nurmi, Tarja ; Mello, Vanessa D. F ; Uusitupa, Matti ; Carlberg, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6042-2d1d2447418402f54c29fc7dffb2e7159d3da471b02423e8a1005fb502c261873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptor Proteins, Signal Transducing - agonists</topic><topic>Adaptor Proteins, Signal Transducing - chemistry</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Adaptor Proteins, Vesicular Transport - agonists</topic><topic>Adaptor Proteins, Vesicular Transport - chemistry</topic><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Adaptor Proteins, Vesicular Transport - metabolism</topic><topic>adipocytes</topic><topic>Adipose tissue</topic><topic>Adipose Tissue - metabolism</topic><topic>Adipose Tissue - pathology</topic><topic>Aged</topic><topic>binding sites</topic><topic>Biological and medical sciences</topic><topic>biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>biopsy</topic><topic>Calcitriol - metabolism</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>cholecalciferol</topic><topic>Cholecalciferol - administration &amp; dosage</topic><topic>Cholecalciferol - deficiency</topic><topic>Cholecalciferol - metabolism</topic><topic>Cholecalciferol - therapeutic use</topic><topic>Chromatin immunoprecipitation</topic><topic>Conserved Sequence</topic><topic>Dietary Supplements</topic><topic>Dual-Specificity Phosphatases - chemistry</topic><topic>Dual-Specificity Phosphatases - genetics</topic><topic>Dual-Specificity Phosphatases - metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>Finland</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>Humans</topic><topic>loci</topic><topic>Male</topic><topic>messenger RNA</topic><topic>metabolites</topic><topic>Mitogen-Activated Protein Kinase Phosphatases - chemistry</topic><topic>Mitogen-Activated Protein Kinase Phosphatases - genetics</topic><topic>Mitogen-Activated Protein Kinase Phosphatases - metabolism</topic><topic>Nuclear Proteins - agonists</topic><topic>Nuclear Proteins - chemistry</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Receptors, Calcitriol - agonists</topic><topic>Receptors, Calcitriol - genetics</topic><topic>Receptors, Calcitriol - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Seasons</topic><topic>Thrombomodulin - agonists</topic><topic>Thrombomodulin - chemistry</topic><topic>Thrombomodulin - genetics</topic><topic>Thrombomodulin - metabolism</topic><topic>Up-Regulation</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Vitamin D</topic><topic>Vitamin D Deficiency - diet therapy</topic><topic>Vitamin D Deficiency - metabolism</topic><topic>Vitamin D Deficiency - pathology</topic><topic>Vitamin D receptor</topic><topic>Vitamin D Response Element</topic><topic>Vitamin D target genes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryynänen, Jussi</creatorcontrib><creatorcontrib>Neme, Antonio</creatorcontrib><creatorcontrib>Tuomainen, Tomi‐Pekka</creatorcontrib><creatorcontrib>Virtanen, Jyrki K</creatorcontrib><creatorcontrib>Voutilainen, Sari</creatorcontrib><creatorcontrib>Nurmi, Tarja</creatorcontrib><creatorcontrib>Mello, Vanessa D. F</creatorcontrib><creatorcontrib>Uusitupa, Matti</creatorcontrib><creatorcontrib>Carlberg, Carsten</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular nutrition &amp; food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryynänen, Jussi</au><au>Neme, Antonio</au><au>Tuomainen, Tomi‐Pekka</au><au>Virtanen, Jyrki K</au><au>Voutilainen, Sari</au><au>Nurmi, Tarja</au><au>Mello, Vanessa D. F</au><au>Uusitupa, Matti</au><au>Carlberg, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals</atitle><jtitle>Molecular nutrition &amp; food research</jtitle><addtitle>Mol. Nutr. Food Res</addtitle><date>2014-10</date><risdate>2014</risdate><volume>58</volume><issue>10</issue><spage>2036</spage><epage>2045</epage><pages>2036-2045</pages><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>SCOPE: Vitamin D₃, its biologically most active metabolite 1α,25‐dihydroxyvitamin D₃ (1,25(OH)₂D₃), and the vitamin D receptor (VDR) are important for adipose tissue biology. METHODS AND RESULTS: We extrapolated genomic VDR association loci in adipocytes from 55 conserved genome‐wide VDR‐binding sites in nonfat tissues. Taking the genes DUSP10, TRAK1, NRIP1, and THBD as examples, we confirmed the predicted VDR binding sites upstream of their transcription start sites and showed rapid mRNA up‐regulation of all four genes in SGBS human pre‐adipocytes. Using adipose tissue biopsy samples from 47 participants of a 5‐month vitamin D₃ intervention study, we demonstrated that all four primary VDR target genes can serve as biomarkers for the vitamin D₃ responsiveness of human individuals. Changes in DUSP10 gene expression appear to be the most comprehensive marker, while THBD mRNA changes characterized a rather different group of study participants. CONCLUSION: We present a new approach to predict vitamin D target genes based on conserved genomic VDR‐binding sites. Using human adipocytes as examples, we show that such ubiquitous VDR target genes can be used as markers for the individual's response to a supplementation with vitamin D₃.</abstract><cop>Weinheim</cop><pub>Wiley-VCH</pub><pmid>24975273</pmid><doi>10.1002/mnfr.201400291</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-4125
ispartof Molecular nutrition & food research, 2014-10, Vol.58 (10), p.2036-2045
issn 1613-4125
1613-4133
language eng
recordid cdi_proquest_miscellaneous_1660390842
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adaptor Proteins, Signal Transducing - agonists
Adaptor Proteins, Signal Transducing - chemistry
Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Adaptor Proteins, Vesicular Transport - agonists
Adaptor Proteins, Vesicular Transport - chemistry
Adaptor Proteins, Vesicular Transport - genetics
Adaptor Proteins, Vesicular Transport - metabolism
adipocytes
Adipose tissue
Adipose Tissue - metabolism
Adipose Tissue - pathology
Aged
binding sites
Biological and medical sciences
biomarkers
Biomarkers - metabolism
biopsy
Calcitriol - metabolism
Cell Line
Cells, Cultured
cholecalciferol
Cholecalciferol - administration & dosage
Cholecalciferol - deficiency
Cholecalciferol - metabolism
Cholecalciferol - therapeutic use
Chromatin immunoprecipitation
Conserved Sequence
Dietary Supplements
Dual-Specificity Phosphatases - chemistry
Dual-Specificity Phosphatases - genetics
Dual-Specificity Phosphatases - metabolism
Feeding. Feeding behavior
Finland
Fundamental and applied biological sciences. Psychology
gene expression
gene expression regulation
genes
Humans
loci
Male
messenger RNA
metabolites
Mitogen-Activated Protein Kinase Phosphatases - chemistry
Mitogen-Activated Protein Kinase Phosphatases - genetics
Mitogen-Activated Protein Kinase Phosphatases - metabolism
Nuclear Proteins - agonists
Nuclear Proteins - chemistry
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Receptors, Calcitriol - agonists
Receptors, Calcitriol - genetics
Receptors, Calcitriol - metabolism
RNA, Messenger - metabolism
Seasons
Thrombomodulin - agonists
Thrombomodulin - chemistry
Thrombomodulin - genetics
Thrombomodulin - metabolism
Up-Regulation
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Vitamin D
Vitamin D Deficiency - diet therapy
Vitamin D Deficiency - metabolism
Vitamin D Deficiency - pathology
Vitamin D receptor
Vitamin D Response Element
Vitamin D target genes
title Changes in vitamin D target gene expression in adipose tissue monitor the vitamin D response of human individuals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20vitamin%20D%20target%20gene%20expression%20in%20adipose%20tissue%20monitor%20the%20vitamin%20D%20response%20of%20human%20individuals&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Ryyn%C3%A4nen,%20Jussi&rft.date=2014-10&rft.volume=58&rft.issue=10&rft.spage=2036&rft.epage=2045&rft.pages=2036-2045&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.201400291&rft_dat=%3Cproquest_cross%3E1586098397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1586098397&rft_id=info:pmid/24975273&rfr_iscdi=true