Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions
Magnetic biochar is increasingly known as a multi-functional material and the appropriate synthesis method further increase its efficient applications. In this study, the effects of synthesis methods on the fabrication of Kans grass straw/biochar (KGS/KGB) with Fe super(3+)/Fe super(2+) by chemical...
Gespeichert in:
Veröffentlicht in: | Biomass & bioenergy 2014-12, Vol.71, p.299-310 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | |
container_start_page | 299 |
container_title | Biomass & bioenergy |
container_volume | 71 |
creator | SHAMS ALI BAIG JIN ZHU MUHAMMAD, Niaz TIANTIAN SHENG XINHUA XU |
description | Magnetic biochar is increasingly known as a multi-functional material and the appropriate synthesis method further increase its efficient applications. In this study, the effects of synthesis methods on the fabrication of Kans grass straw/biochar (KGS/KGB) with Fe super(3+)/Fe super(2+) by chemical co-precipitation and subsequently pyrolyzing at 500 degree C for 2 and 4 h were studied in details, and compared their As(III, V) adsorption potentials under different operating conditions. Magnetic biochars (MKGB3 and MKGB4) prepared from KGS revealed of superior Fe sub(3)O sub(4) loading, higher As(III, V) adsorption efficiency and saturation magnetization (45.7 Am super(2) kg super(-1)) than that of KGB (MKGB1 and MKGB2). Moreover, Thermogravimetric analysis (TGA) demonstrated three stages of decomposition and the MKGB3 and MKGB4 generated higher residual mass (>60%) at stage 3 (1000 degree C) due to greater Fe sub(3)O sub(4) composite in biochar matrix and turned to be thermally more stable. As(III) and As(V) adsorption equilibrium data well fitted in Langmuir model and followed the order: MKGB4 > MKGB3 > MKGB2 > MKGB1. The maximum As(III) and As(V) adsorption capacities were about 2.0 mg g super(-1) and 3.1 mg g super(-1), respectively. The data best fitted in pseudo-second-order (R super(2) > 0.99) rather than pseudo-first-order kinetics model indicating of more complex mechanism. The adsorption of As(III) and As(V) was found to decrease with increasing in ionic strength of competing ions and PO sub(4) super(3-) was found to strongly inhibit arsenic adsorption. Highest desorption was achieved at pH 13.5 using NaOH. This study suggests that selective adsorbent synthesis method could be useful to prepare effective adsorbent for toxic metals immobilization. |
doi_str_mv | 10.1016/j.biombioe.2014.09.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660390807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660390807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-b1d6ff691543fcb3c345d41352596e356176a9b3c970a416cbbce99cca74fd6e3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKd_QfIiTLA1d2nT5XGMqcWBL-prSNNk62ibmds97N-bsenD5cLhnHsPHyH3wFJgIJ63adX4Lo5NpwyylMmUTYsLMoJZwZOpZPKSjJgUkMicZ9fkBnHLopFlMCLD0jlrBuodxUM_bCw2SDs7bHyN1Pe00-veDo2h77pHug4akcZXZqMDdT5Q2290b2xN5zgpy_KJfj9SXaMPu6GJcRd8R_XP3vo9UvTt_qjiLblyukV7d95j8vWy_Fy8JauP13IxXyWGw2xIKqiFc0JCnnFnKm54ltcZ8HyaS2F5LqAQWkZdFkxnIExVGSulMbrIXB0dYzI53d0FHzvgoLoGjW1b3R8LKRCCcclmrIhWcbKa4BGDdWoXmk6HgwKmjpjVVv1hVkfMikkVMcfgw_mHRqNbFyKOBv_TET8ULAf-C0hNgaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660390807</pqid></control><display><type>article</type><title>Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions</title><source>Elsevier ScienceDirect Journals</source><creator>SHAMS ALI BAIG ; JIN ZHU ; MUHAMMAD, Niaz ; TIANTIAN SHENG ; XINHUA XU</creator><creatorcontrib>SHAMS ALI BAIG ; JIN ZHU ; MUHAMMAD, Niaz ; TIANTIAN SHENG ; XINHUA XU</creatorcontrib><description>Magnetic biochar is increasingly known as a multi-functional material and the appropriate synthesis method further increase its efficient applications. In this study, the effects of synthesis methods on the fabrication of Kans grass straw/biochar (KGS/KGB) with Fe super(3+)/Fe super(2+) by chemical co-precipitation and subsequently pyrolyzing at 500 degree C for 2 and 4 h were studied in details, and compared their As(III, V) adsorption potentials under different operating conditions. Magnetic biochars (MKGB3 and MKGB4) prepared from KGS revealed of superior Fe sub(3)O sub(4) loading, higher As(III, V) adsorption efficiency and saturation magnetization (45.7 Am super(2) kg super(-1)) than that of KGB (MKGB1 and MKGB2). Moreover, Thermogravimetric analysis (TGA) demonstrated three stages of decomposition and the MKGB3 and MKGB4 generated higher residual mass (>60%) at stage 3 (1000 degree C) due to greater Fe sub(3)O sub(4) composite in biochar matrix and turned to be thermally more stable. As(III) and As(V) adsorption equilibrium data well fitted in Langmuir model and followed the order: MKGB4 > MKGB3 > MKGB2 > MKGB1. The maximum As(III) and As(V) adsorption capacities were about 2.0 mg g super(-1) and 3.1 mg g super(-1), respectively. The data best fitted in pseudo-second-order (R super(2) > 0.99) rather than pseudo-first-order kinetics model indicating of more complex mechanism. The adsorption of As(III) and As(V) was found to decrease with increasing in ionic strength of competing ions and PO sub(4) super(3-) was found to strongly inhibit arsenic adsorption. Highest desorption was achieved at pH 13.5 using NaOH. This study suggests that selective adsorbent synthesis method could be useful to prepare effective adsorbent for toxic metals immobilization.</description><identifier>ISSN: 0961-9534</identifier><identifier>EISSN: 1873-2909</identifier><identifier>DOI: 10.1016/j.biombioe.2014.09.027</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Applied sciences ; Exact sciences and technology ; Pollution ; Water treatment and pollution</subject><ispartof>Biomass & bioenergy, 2014-12, Vol.71, p.299-310</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-b1d6ff691543fcb3c345d41352596e356176a9b3c970a416cbbce99cca74fd6e3</citedby><cites>FETCH-LOGICAL-c318t-b1d6ff691543fcb3c345d41352596e356176a9b3c970a416cbbce99cca74fd6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29017051$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SHAMS ALI BAIG</creatorcontrib><creatorcontrib>JIN ZHU</creatorcontrib><creatorcontrib>MUHAMMAD, Niaz</creatorcontrib><creatorcontrib>TIANTIAN SHENG</creatorcontrib><creatorcontrib>XINHUA XU</creatorcontrib><title>Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions</title><title>Biomass & bioenergy</title><description>Magnetic biochar is increasingly known as a multi-functional material and the appropriate synthesis method further increase its efficient applications. In this study, the effects of synthesis methods on the fabrication of Kans grass straw/biochar (KGS/KGB) with Fe super(3+)/Fe super(2+) by chemical co-precipitation and subsequently pyrolyzing at 500 degree C for 2 and 4 h were studied in details, and compared their As(III, V) adsorption potentials under different operating conditions. Magnetic biochars (MKGB3 and MKGB4) prepared from KGS revealed of superior Fe sub(3)O sub(4) loading, higher As(III, V) adsorption efficiency and saturation magnetization (45.7 Am super(2) kg super(-1)) than that of KGB (MKGB1 and MKGB2). Moreover, Thermogravimetric analysis (TGA) demonstrated three stages of decomposition and the MKGB3 and MKGB4 generated higher residual mass (>60%) at stage 3 (1000 degree C) due to greater Fe sub(3)O sub(4) composite in biochar matrix and turned to be thermally more stable. As(III) and As(V) adsorption equilibrium data well fitted in Langmuir model and followed the order: MKGB4 > MKGB3 > MKGB2 > MKGB1. The maximum As(III) and As(V) adsorption capacities were about 2.0 mg g super(-1) and 3.1 mg g super(-1), respectively. The data best fitted in pseudo-second-order (R super(2) > 0.99) rather than pseudo-first-order kinetics model indicating of more complex mechanism. The adsorption of As(III) and As(V) was found to decrease with increasing in ionic strength of competing ions and PO sub(4) super(3-) was found to strongly inhibit arsenic adsorption. Highest desorption was achieved at pH 13.5 using NaOH. This study suggests that selective adsorbent synthesis method could be useful to prepare effective adsorbent for toxic metals immobilization.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Pollution</subject><subject>Water treatment and pollution</subject><issn>0961-9534</issn><issn>1873-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOKd_QfIiTLA1d2nT5XGMqcWBL-prSNNk62ibmds97N-bsenD5cLhnHsPHyH3wFJgIJ63adX4Lo5NpwyylMmUTYsLMoJZwZOpZPKSjJgUkMicZ9fkBnHLopFlMCLD0jlrBuodxUM_bCw2SDs7bHyN1Pe00-veDo2h77pHug4akcZXZqMDdT5Q2290b2xN5zgpy_KJfj9SXaMPu6GJcRd8R_XP3vo9UvTt_qjiLblyukV7d95j8vWy_Fy8JauP13IxXyWGw2xIKqiFc0JCnnFnKm54ltcZ8HyaS2F5LqAQWkZdFkxnIExVGSulMbrIXB0dYzI53d0FHzvgoLoGjW1b3R8LKRCCcclmrIhWcbKa4BGDdWoXmk6HgwKmjpjVVv1hVkfMikkVMcfgw_mHRqNbFyKOBv_TET8ULAf-C0hNgaQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>SHAMS ALI BAIG</creator><creator>JIN ZHU</creator><creator>MUHAMMAD, Niaz</creator><creator>TIANTIAN SHENG</creator><creator>XINHUA XU</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20141201</creationdate><title>Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions</title><author>SHAMS ALI BAIG ; JIN ZHU ; MUHAMMAD, Niaz ; TIANTIAN SHENG ; XINHUA XU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-b1d6ff691543fcb3c345d41352596e356176a9b3c970a416cbbce99cca74fd6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Pollution</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHAMS ALI BAIG</creatorcontrib><creatorcontrib>JIN ZHU</creatorcontrib><creatorcontrib>MUHAMMAD, Niaz</creatorcontrib><creatorcontrib>TIANTIAN SHENG</creatorcontrib><creatorcontrib>XINHUA XU</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Biomass & bioenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHAMS ALI BAIG</au><au>JIN ZHU</au><au>MUHAMMAD, Niaz</au><au>TIANTIAN SHENG</au><au>XINHUA XU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions</atitle><jtitle>Biomass & bioenergy</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>71</volume><spage>299</spage><epage>310</epage><pages>299-310</pages><issn>0961-9534</issn><eissn>1873-2909</eissn><abstract>Magnetic biochar is increasingly known as a multi-functional material and the appropriate synthesis method further increase its efficient applications. In this study, the effects of synthesis methods on the fabrication of Kans grass straw/biochar (KGS/KGB) with Fe super(3+)/Fe super(2+) by chemical co-precipitation and subsequently pyrolyzing at 500 degree C for 2 and 4 h were studied in details, and compared their As(III, V) adsorption potentials under different operating conditions. Magnetic biochars (MKGB3 and MKGB4) prepared from KGS revealed of superior Fe sub(3)O sub(4) loading, higher As(III, V) adsorption efficiency and saturation magnetization (45.7 Am super(2) kg super(-1)) than that of KGB (MKGB1 and MKGB2). Moreover, Thermogravimetric analysis (TGA) demonstrated three stages of decomposition and the MKGB3 and MKGB4 generated higher residual mass (>60%) at stage 3 (1000 degree C) due to greater Fe sub(3)O sub(4) composite in biochar matrix and turned to be thermally more stable. As(III) and As(V) adsorption equilibrium data well fitted in Langmuir model and followed the order: MKGB4 > MKGB3 > MKGB2 > MKGB1. The maximum As(III) and As(V) adsorption capacities were about 2.0 mg g super(-1) and 3.1 mg g super(-1), respectively. The data best fitted in pseudo-second-order (R super(2) > 0.99) rather than pseudo-first-order kinetics model indicating of more complex mechanism. The adsorption of As(III) and As(V) was found to decrease with increasing in ionic strength of competing ions and PO sub(4) super(3-) was found to strongly inhibit arsenic adsorption. Highest desorption was achieved at pH 13.5 using NaOH. This study suggests that selective adsorbent synthesis method could be useful to prepare effective adsorbent for toxic metals immobilization.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.biombioe.2014.09.027</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-9534 |
ispartof | Biomass & bioenergy, 2014-12, Vol.71, p.299-310 |
issn | 0961-9534 1873-2909 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660390807 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Exact sciences and technology Pollution Water treatment and pollution |
title | Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20synthesis%20methods%20on%20magnetic%20Kans%20grass%20biochar%20for%20enhanced%20As(III,%20V)%20adsorption%20from%20aqueous%20solutions&rft.jtitle=Biomass%20&%20bioenergy&rft.au=SHAMS%20ALI%20BAIG&rft.date=2014-12-01&rft.volume=71&rft.spage=299&rft.epage=310&rft.pages=299-310&rft.issn=0961-9534&rft.eissn=1873-2909&rft_id=info:doi/10.1016/j.biombioe.2014.09.027&rft_dat=%3Cproquest_cross%3E1660390807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660390807&rft_id=info:pmid/&rfr_iscdi=true |