On the behavior of the leading eigenvalue of Eigen’s evolutionary matrices
•A purely algebraic approach to the Eigen quasispecies model is elaborated.•Exact expressions for the mean population fitness are found.•Upper and lower bounds are found for the single peaked landscape.•Formula for the error threshold is conjectured. We study general properties of the leading eigenv...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2014-12, Vol.258, p.134-147 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | |
container_start_page | 134 |
container_title | Mathematical biosciences |
container_volume | 258 |
creator | Semenov, Yuri S. Bratus, Alexander S. Novozhilov, Artem S. |
description | •A purely algebraic approach to the Eigen quasispecies model is elaborated.•Exact expressions for the mean population fitness are found.•Upper and lower bounds are found for the single peaked landscape.•Formula for the error threshold is conjectured.
We study general properties of the leading eigenvalue w¯(q) of Eigen’s evolutionary matrices depending on the replication fidelity q. This is a linear algebra problem that has various applications in theoretical biology, including such diverse fields as the origin of life, evolution of cancer progression, and virus evolution. We present the exact expressions for w¯(q),w¯′(q),w¯′′(q) for q = 0, 0.5, 1 and prove that the absolute minimum of w¯(q), which always exists, belongs to the interval (0, 0.5]. For the specific case of a single peaked landscape we also find lower and upper bounds on w¯(q), which are used to estimate the critical mutation rate, after which the distribution of the types of individuals in the population becomes almost uniform. This estimate is used as a starting point to conjecture another estimate, valid for any fitness landscape, and which is checked by numerical calculations. The last estimate stresses the fact that the inverse dependence of the critical mutation rate on the sequence length is not a generally valid fact. |
doi_str_mv | 10.1016/j.mbs.2014.10.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660385768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556414002181</els_id><sourcerecordid>1660385768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-fcedeebed09e392de1e284be79941554b65c9d145c5bf96bc798d102896bce833</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EoqXwACwoI0uCT2InsZhQVS5SpS4wW4lz0rrKpdhJJDZeg9fjSXBoYURM9m9_55fOR8gl0AAoxDfboM5tEFJgLgeUsiMyhTQRfgQROyZTSkPucx6zCTmzdkspJADxKZmEnDGexGxKlqvG6zbo5bjJBt0ary2_c4VZoZu1h3qNzZBVPY4_izF9vn9YD4e26jvdNpl58-qsM1qhPScnZVZZvDicM_Jyv3ieP_rL1cPT_G7pKxaKzi8VFog5FlRgJMICAcOU5ZgIwYBzlsdciQIYVzwvRZyrRKQF0DAd75hG0Yxc73t3pn3t0Xay1lZhVWUNtr2VEMc0St2C6T_QiFMaQSgcCntUmdZag6XcGV27_SRQOfqWW-l8y9H3-OR8u5mrQ32f11j8TvwIdsDtHkDnY9BopFUaG2dAG1SdLFr9R_0XYRiRIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635003129</pqid></control><display><type>article</type><title>On the behavior of the leading eigenvalue of Eigen’s evolutionary matrices</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Semenov, Yuri S. ; Bratus, Alexander S. ; Novozhilov, Artem S.</creator><creatorcontrib>Semenov, Yuri S. ; Bratus, Alexander S. ; Novozhilov, Artem S.</creatorcontrib><description>•A purely algebraic approach to the Eigen quasispecies model is elaborated.•Exact expressions for the mean population fitness are found.•Upper and lower bounds are found for the single peaked landscape.•Formula for the error threshold is conjectured.
We study general properties of the leading eigenvalue w¯(q) of Eigen’s evolutionary matrices depending on the replication fidelity q. This is a linear algebra problem that has various applications in theoretical biology, including such diverse fields as the origin of life, evolution of cancer progression, and virus evolution. We present the exact expressions for w¯(q),w¯′(q),w¯′′(q) for q = 0, 0.5, 1 and prove that the absolute minimum of w¯(q), which always exists, belongs to the interval (0, 0.5]. For the specific case of a single peaked landscape we also find lower and upper bounds on w¯(q), which are used to estimate the critical mutation rate, after which the distribution of the types of individuals in the population becomes almost uniform. This estimate is used as a starting point to conjecture another estimate, valid for any fitness landscape, and which is checked by numerical calculations. The last estimate stresses the fact that the inverse dependence of the critical mutation rate on the sequence length is not a generally valid fact.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2014.10.004</identifier><identifier>PMID: 25445764</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biological Evolution ; Dominant eigenvalue ; Eigen model ; Error threshold ; Models, Theoretical ; Quasispecies model ; Single peaked landscape</subject><ispartof>Mathematical biosciences, 2014-12, Vol.258, p.134-147</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-fcedeebed09e392de1e284be79941554b65c9d145c5bf96bc798d102896bce833</citedby><cites>FETCH-LOGICAL-c429t-fcedeebed09e392de1e284be79941554b65c9d145c5bf96bc798d102896bce833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2014.10.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25445764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Semenov, Yuri S.</creatorcontrib><creatorcontrib>Bratus, Alexander S.</creatorcontrib><creatorcontrib>Novozhilov, Artem S.</creatorcontrib><title>On the behavior of the leading eigenvalue of Eigen’s evolutionary matrices</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>•A purely algebraic approach to the Eigen quasispecies model is elaborated.•Exact expressions for the mean population fitness are found.•Upper and lower bounds are found for the single peaked landscape.•Formula for the error threshold is conjectured.
We study general properties of the leading eigenvalue w¯(q) of Eigen’s evolutionary matrices depending on the replication fidelity q. This is a linear algebra problem that has various applications in theoretical biology, including such diverse fields as the origin of life, evolution of cancer progression, and virus evolution. We present the exact expressions for w¯(q),w¯′(q),w¯′′(q) for q = 0, 0.5, 1 and prove that the absolute minimum of w¯(q), which always exists, belongs to the interval (0, 0.5]. For the specific case of a single peaked landscape we also find lower and upper bounds on w¯(q), which are used to estimate the critical mutation rate, after which the distribution of the types of individuals in the population becomes almost uniform. This estimate is used as a starting point to conjecture another estimate, valid for any fitness landscape, and which is checked by numerical calculations. The last estimate stresses the fact that the inverse dependence of the critical mutation rate on the sequence length is not a generally valid fact.</description><subject>Biological Evolution</subject><subject>Dominant eigenvalue</subject><subject>Eigen model</subject><subject>Error threshold</subject><subject>Models, Theoretical</subject><subject>Quasispecies model</subject><subject>Single peaked landscape</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkLtOwzAUhi0EoqXwACwoI0uCT2InsZhQVS5SpS4wW4lz0rrKpdhJJDZeg9fjSXBoYURM9m9_55fOR8gl0AAoxDfboM5tEFJgLgeUsiMyhTQRfgQROyZTSkPucx6zCTmzdkspJADxKZmEnDGexGxKlqvG6zbo5bjJBt0ary2_c4VZoZu1h3qNzZBVPY4_izF9vn9YD4e26jvdNpl58-qsM1qhPScnZVZZvDicM_Jyv3ieP_rL1cPT_G7pKxaKzi8VFog5FlRgJMICAcOU5ZgIwYBzlsdciQIYVzwvRZyrRKQF0DAd75hG0Yxc73t3pn3t0Xay1lZhVWUNtr2VEMc0St2C6T_QiFMaQSgcCntUmdZag6XcGV27_SRQOfqWW-l8y9H3-OR8u5mrQ32f11j8TvwIdsDtHkDnY9BopFUaG2dAG1SdLFr9R_0XYRiRIQ</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Semenov, Yuri S.</creator><creator>Bratus, Alexander S.</creator><creator>Novozhilov, Artem S.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201412</creationdate><title>On the behavior of the leading eigenvalue of Eigen’s evolutionary matrices</title><author>Semenov, Yuri S. ; Bratus, Alexander S. ; Novozhilov, Artem S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-fcedeebed09e392de1e284be79941554b65c9d145c5bf96bc798d102896bce833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological Evolution</topic><topic>Dominant eigenvalue</topic><topic>Eigen model</topic><topic>Error threshold</topic><topic>Models, Theoretical</topic><topic>Quasispecies model</topic><topic>Single peaked landscape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semenov, Yuri S.</creatorcontrib><creatorcontrib>Bratus, Alexander S.</creatorcontrib><creatorcontrib>Novozhilov, Artem S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Semenov, Yuri S.</au><au>Bratus, Alexander S.</au><au>Novozhilov, Artem S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the behavior of the leading eigenvalue of Eigen’s evolutionary matrices</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2014-12</date><risdate>2014</risdate><volume>258</volume><spage>134</spage><epage>147</epage><pages>134-147</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>•A purely algebraic approach to the Eigen quasispecies model is elaborated.•Exact expressions for the mean population fitness are found.•Upper and lower bounds are found for the single peaked landscape.•Formula for the error threshold is conjectured.
We study general properties of the leading eigenvalue w¯(q) of Eigen’s evolutionary matrices depending on the replication fidelity q. This is a linear algebra problem that has various applications in theoretical biology, including such diverse fields as the origin of life, evolution of cancer progression, and virus evolution. We present the exact expressions for w¯(q),w¯′(q),w¯′′(q) for q = 0, 0.5, 1 and prove that the absolute minimum of w¯(q), which always exists, belongs to the interval (0, 0.5]. For the specific case of a single peaked landscape we also find lower and upper bounds on w¯(q), which are used to estimate the critical mutation rate, after which the distribution of the types of individuals in the population becomes almost uniform. This estimate is used as a starting point to conjecture another estimate, valid for any fitness landscape, and which is checked by numerical calculations. The last estimate stresses the fact that the inverse dependence of the critical mutation rate on the sequence length is not a generally valid fact.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25445764</pmid><doi>10.1016/j.mbs.2014.10.004</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5564 |
ispartof | Mathematical biosciences, 2014-12, Vol.258, p.134-147 |
issn | 0025-5564 1879-3134 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660385768 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biological Evolution Dominant eigenvalue Eigen model Error threshold Models, Theoretical Quasispecies model Single peaked landscape |
title | On the behavior of the leading eigenvalue of Eigen’s evolutionary matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20behavior%20of%20the%20leading%20eigenvalue%20of%20Eigen%E2%80%99s%20evolutionary%20matrices&rft.jtitle=Mathematical%20biosciences&rft.au=Semenov,%20Yuri%20S.&rft.date=2014-12&rft.volume=258&rft.spage=134&rft.epage=147&rft.pages=134-147&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2014.10.004&rft_dat=%3Cproquest_cross%3E1660385768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635003129&rft_id=info:pmid/25445764&rft_els_id=S0025556414002181&rfr_iscdi=true |