Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control

This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2013-08, Vol.26 (4), p.1038-1056
Hauptverfasser: Zhang, Yu, Chen, Jing, Shen, Lincheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1056
container_issue 4
container_start_page 1038
container_title Chinese journal of aeronautics
container_volume 26
creator Zhang, Yu
Chen, Jing
Shen, Lincheng
description This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.
doi_str_mv 10.1016/j.cja.2013.04.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660096110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>46934293</cqvip_id><els_id>S1000936113000915</els_id><sourcerecordid>1660096110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-33b62c403edf5d46da3d801bc7ac859b8a892d1f02d93ff19221c4238557fca83</originalsourceid><addsrcrecordid>eNp9UE1rGzEQ3UMDTdP-gN7UWy7rjlbr9YqcgmnSgiEQml7FWBrF2u5KjiQHnHN_eLU45Bh4MId5H7xXVV85LDjw7vuw0AMuGuBiAW0BfKjOOQDUUnT8Y_UppQFAyBWH8-rfPeFYZzcRyxEH0jnEI9uP6L3zj8yGyB7W138YuljnUKdDtKiJYc6o_7JDmknOP1NMxMzR4-R0YmFfDN0LZhc8myjvgmHoDYukycyKXYjupfx08DmG8XN1ZnFM9OX1XlQPNz9-r3_Wm7vbX-vrTa2FlLkWYts1ugVBxi5N2xkUpge-1SvU_VJue-xlY7iFxkhhLZdNw3XbiH65XFmNvbioLk---xieDpSymlzSNJa2FA5J8a4DkB3nUKj8RNUxpBTJqn10E8aj4qDmldWgyspqXllBWzBrrk4aKh2eHUWVtCM_dy7NszLBvav-9pq4C_7xqcz0Ftl2UrSNFOI_ejiU4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660096110</pqid></control><display><type>article</type><title>Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Yu ; Chen, Jing ; Shen, Lincheng</creator><creatorcontrib>Zhang, Yu ; Chen, Jing ; Shen, Lincheng</creatorcontrib><description>This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2013.04.040</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Air-to-surface attack ; Computational efficiency ; Direct method ; Dynamics ; Horizon ; Inverse dynamics ; Mathematical models ; Motion planning ; Optimization ; Real time ; Real time control ; Receding horizon control ; Trajectory planning ; UCAV ; Unmanned aerial vehicles ; Unmanned combat aerial vehicles ; 动力学优化 ; 实时实现 ; 攻击 ; 滚动控制 ; 空气 ; 表面 ; 轨迹规划</subject><ispartof>Chinese journal of aeronautics, 2013-08, Vol.26 (4), p.1038-1056</ispartof><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-33b62c403edf5d46da3d801bc7ac859b8a892d1f02d93ff19221c4238557fca83</citedby><cites>FETCH-LOGICAL-c399t-33b62c403edf5d46da3d801bc7ac859b8a892d1f02d93ff19221c4238557fca83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83889X/83889X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cja.2013.04.040$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Shen, Lincheng</creatorcontrib><title>Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control</title><title>Chinese journal of aeronautics</title><addtitle>Chinese Journal of Aeronautics</addtitle><description>This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.</description><subject>Air-to-surface attack</subject><subject>Computational efficiency</subject><subject>Direct method</subject><subject>Dynamics</subject><subject>Horizon</subject><subject>Inverse dynamics</subject><subject>Mathematical models</subject><subject>Motion planning</subject><subject>Optimization</subject><subject>Real time</subject><subject>Real time control</subject><subject>Receding horizon control</subject><subject>Trajectory planning</subject><subject>UCAV</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned combat aerial vehicles</subject><subject>动力学优化</subject><subject>实时实现</subject><subject>攻击</subject><subject>滚动控制</subject><subject>空气</subject><subject>表面</subject><subject>轨迹规划</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UE1rGzEQ3UMDTdP-gN7UWy7rjlbr9YqcgmnSgiEQml7FWBrF2u5KjiQHnHN_eLU45Bh4MId5H7xXVV85LDjw7vuw0AMuGuBiAW0BfKjOOQDUUnT8Y_UppQFAyBWH8-rfPeFYZzcRyxEH0jnEI9uP6L3zj8yGyB7W138YuljnUKdDtKiJYc6o_7JDmknOP1NMxMzR4-R0YmFfDN0LZhc8myjvgmHoDYukycyKXYjupfx08DmG8XN1ZnFM9OX1XlQPNz9-r3_Wm7vbX-vrTa2FlLkWYts1ugVBxi5N2xkUpge-1SvU_VJue-xlY7iFxkhhLZdNw3XbiH65XFmNvbioLk---xieDpSymlzSNJa2FA5J8a4DkB3nUKj8RNUxpBTJqn10E8aj4qDmldWgyspqXllBWzBrrk4aKh2eHUWVtCM_dy7NszLBvav-9pq4C_7xqcz0Ftl2UrSNFOI_ejiU4Q</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Zhang, Yu</creator><creator>Chen, Jing</creator><creator>Shen, Lincheng</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control</title><author>Zhang, Yu ; Chen, Jing ; Shen, Lincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-33b62c403edf5d46da3d801bc7ac859b8a892d1f02d93ff19221c4238557fca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Air-to-surface attack</topic><topic>Computational efficiency</topic><topic>Direct method</topic><topic>Dynamics</topic><topic>Horizon</topic><topic>Inverse dynamics</topic><topic>Mathematical models</topic><topic>Motion planning</topic><topic>Optimization</topic><topic>Real time</topic><topic>Real time control</topic><topic>Receding horizon control</topic><topic>Trajectory planning</topic><topic>UCAV</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned combat aerial vehicles</topic><topic>动力学优化</topic><topic>实时实现</topic><topic>攻击</topic><topic>滚动控制</topic><topic>空气</topic><topic>表面</topic><topic>轨迹规划</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Shen, Lincheng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yu</au><au>Chen, Jing</au><au>Shen, Lincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control</atitle><jtitle>Chinese journal of aeronautics</jtitle><addtitle>Chinese Journal of Aeronautics</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>26</volume><issue>4</issue><spage>1038</spage><epage>1056</epage><pages>1038-1056</pages><issn>1000-9361</issn><abstract>This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2013.04.040</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2013-08, Vol.26 (4), p.1038-1056
issn 1000-9361
language eng
recordid cdi_proquest_miscellaneous_1660096110
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Air-to-surface attack
Computational efficiency
Direct method
Dynamics
Horizon
Inverse dynamics
Mathematical models
Motion planning
Optimization
Real time
Real time control
Receding horizon control
Trajectory planning
UCAV
Unmanned aerial vehicles
Unmanned combat aerial vehicles
动力学优化
实时实现
攻击
滚动控制
空气
表面
轨迹规划
title Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20trajectory%20planning%20for%20UCAV%20air-to-surface%20attack%20using%20inverse%20dynamics%20optimization%20method%20and%20receding%20horizon%20control&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=Zhang,%20Yu&rft.date=2013-08-01&rft.volume=26&rft.issue=4&rft.spage=1038&rft.epage=1056&rft.pages=1038-1056&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2013.04.040&rft_dat=%3Cproquest_cross%3E1660096110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660096110&rft_id=info:pmid/&rft_cqvip_id=46934293&rft_els_id=S1000936113000915&rfr_iscdi=true