The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine

Stem cells with multipotent and self-renewal abilities play a vital role in regenerative medicine and tissue engineering. They can assist tissue reconstruction through specific differentiation and secretion of various bioactive macromolecules. More and more studies confirm that the cell-fate commitm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2014-12, Vol.45, p.671-681
Hauptverfasser: Jin, Guorui, Li, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue
container_start_page 671
container_title Materials Science & Engineering C
container_volume 45
creator Jin, Guorui
Li, Kai
description Stem cells with multipotent and self-renewal abilities play a vital role in regenerative medicine and tissue engineering. They can assist tissue reconstruction through specific differentiation and secretion of various bioactive macromolecules. More and more studies confirm that the cell-fate commitment can be manipulated via constructing a specific stem cell niche. The construction of specific niches with conductive materials (conducting polymers, carbon nanotubes and graphene) can promote stem cell differentiation towards electro-active lineages and emphasize the promising role of stem cells in electro-active tissue regeneration (e.g., nerve and heart). In this review, we summarize the commonly applied conductive materials for scaffold construction and evaluate their contributions in the regeneration of electro-active tissues. •Stem cell, niche and their contributions in regenerative medicine are summarized.•Fabrication and cytotoxicity of commonly used conductive materials are reviewed.•Conductive scaffolds for guiding stem cell differentiation are well discussed.
doi_str_mv 10.1016/j.msec.2014.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660095537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092849311400366X</els_id><sourcerecordid>1660095537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c632t-75776634b752f3623abeea19943ba10db8ee8c0524720a0e73f8cd2117a28f963</originalsourceid><addsrcrecordid>eNqNkTtPwzAUhS0EoqXwBxiQR5aEazuxE4kFIV5SJZYyG8e5AZc8ip0i9d_jUmBETB7ud46s8xFyyiBlwOTFMu0C2pQDy1KQKUC2R6asUCIBVrJ9MoWSF0lWCjYhRyEsAWQhFD8kE55nZQTllDwvXpFii3b0zpq23VA79PXaju4DabCmaYa2pibQMXLhLZLj0NOhoWHEjlpsW9o7G2-upx5fsEdvvrId1s66Ho_JQWPagCff74w83d4sru-T-ePdw_XVPLFS8DFRuVJSiqxSOW-E5MJUiIaVZSYqw6CuCsTCQs4zxcEAKtEUtuaMKcOLppRiRs53vSs_vK8xjLpzYfs_0-OwDppJCVDmuVD_QEUOIIo8iyjfodYPIXhs9Mq7zviNZqC3EvRSbyXorQQNUkcJMXT23b-u4gy_kZ_VI3C5AzAO8uHQ62Ad9jZO5qMJXQ_ur_5PrXOX7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635003854</pqid></control><display><type>article</type><title>The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jin, Guorui ; Li, Kai</creator><creatorcontrib>Jin, Guorui ; Li, Kai</creatorcontrib><description>Stem cells with multipotent and self-renewal abilities play a vital role in regenerative medicine and tissue engineering. They can assist tissue reconstruction through specific differentiation and secretion of various bioactive macromolecules. More and more studies confirm that the cell-fate commitment can be manipulated via constructing a specific stem cell niche. The construction of specific niches with conductive materials (conducting polymers, carbon nanotubes and graphene) can promote stem cell differentiation towards electro-active lineages and emphasize the promising role of stem cells in electro-active tissue regeneration (e.g., nerve and heart). In this review, we summarize the commonly applied conductive materials for scaffold construction and evaluate their contributions in the regeneration of electro-active tissues. •Stem cell, niche and their contributions in regenerative medicine are summarized.•Fabrication and cytotoxicity of commonly used conductive materials are reviewed.•Conductive scaffolds for guiding stem cell differentiation are well discussed.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2014.06.004</identifier><identifier>PMID: 25491876</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Conductive scaffold ; Construction materials ; Construction specifications ; Differentiation ; Electric Conductivity ; Graphite - chemistry ; Humans ; Medicine ; Nanotubes, Carbon - chemistry ; Polymers - chemistry ; Regeneration ; Regenerative ; Regenerative Medicine ; Scaffolds ; Stem Cell Niche ; Stem cells ; Stem Cells - cytology ; Tissue Engineering ; Tissue Scaffolds</subject><ispartof>Materials Science &amp; Engineering C, 2014-12, Vol.45, p.671-681</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c632t-75776634b752f3623abeea19943ba10db8ee8c0524720a0e73f8cd2117a28f963</citedby><cites>FETCH-LOGICAL-c632t-75776634b752f3623abeea19943ba10db8ee8c0524720a0e73f8cd2117a28f963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2014.06.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25491876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Guorui</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><title>The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>Stem cells with multipotent and self-renewal abilities play a vital role in regenerative medicine and tissue engineering. They can assist tissue reconstruction through specific differentiation and secretion of various bioactive macromolecules. More and more studies confirm that the cell-fate commitment can be manipulated via constructing a specific stem cell niche. The construction of specific niches with conductive materials (conducting polymers, carbon nanotubes and graphene) can promote stem cell differentiation towards electro-active lineages and emphasize the promising role of stem cells in electro-active tissue regeneration (e.g., nerve and heart). In this review, we summarize the commonly applied conductive materials for scaffold construction and evaluate their contributions in the regeneration of electro-active tissues. •Stem cell, niche and their contributions in regenerative medicine are summarized.•Fabrication and cytotoxicity of commonly used conductive materials are reviewed.•Conductive scaffolds for guiding stem cell differentiation are well discussed.</description><subject>Conductive scaffold</subject><subject>Construction materials</subject><subject>Construction specifications</subject><subject>Differentiation</subject><subject>Electric Conductivity</subject><subject>Graphite - chemistry</subject><subject>Humans</subject><subject>Medicine</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Polymers - chemistry</subject><subject>Regeneration</subject><subject>Regenerative</subject><subject>Regenerative Medicine</subject><subject>Scaffolds</subject><subject>Stem Cell Niche</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTtPwzAUhS0EoqXwBxiQR5aEazuxE4kFIV5SJZYyG8e5AZc8ip0i9d_jUmBETB7ud46s8xFyyiBlwOTFMu0C2pQDy1KQKUC2R6asUCIBVrJ9MoWSF0lWCjYhRyEsAWQhFD8kE55nZQTllDwvXpFii3b0zpq23VA79PXaju4DabCmaYa2pibQMXLhLZLj0NOhoWHEjlpsW9o7G2-upx5fsEdvvrId1s66Ho_JQWPagCff74w83d4sru-T-ePdw_XVPLFS8DFRuVJSiqxSOW-E5MJUiIaVZSYqw6CuCsTCQs4zxcEAKtEUtuaMKcOLppRiRs53vSs_vK8xjLpzYfs_0-OwDppJCVDmuVD_QEUOIIo8iyjfodYPIXhs9Mq7zviNZqC3EvRSbyXorQQNUkcJMXT23b-u4gy_kZ_VI3C5AzAO8uHQ62Ad9jZO5qMJXQ_ur_5PrXOX7A</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Jin, Guorui</creator><creator>Li, Kai</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141201</creationdate><title>The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine</title><author>Jin, Guorui ; Li, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c632t-75776634b752f3623abeea19943ba10db8ee8c0524720a0e73f8cd2117a28f963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Conductive scaffold</topic><topic>Construction materials</topic><topic>Construction specifications</topic><topic>Differentiation</topic><topic>Electric Conductivity</topic><topic>Graphite - chemistry</topic><topic>Humans</topic><topic>Medicine</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Polymers - chemistry</topic><topic>Regeneration</topic><topic>Regenerative</topic><topic>Regenerative Medicine</topic><topic>Scaffolds</topic><topic>Stem Cell Niche</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><toplevel>online_resources</toplevel><creatorcontrib>Jin, Guorui</creatorcontrib><creatorcontrib>Li, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Guorui</au><au>Li, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>45</volume><spage>671</spage><epage>681</epage><pages>671-681</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>Stem cells with multipotent and self-renewal abilities play a vital role in regenerative medicine and tissue engineering. They can assist tissue reconstruction through specific differentiation and secretion of various bioactive macromolecules. More and more studies confirm that the cell-fate commitment can be manipulated via constructing a specific stem cell niche. The construction of specific niches with conductive materials (conducting polymers, carbon nanotubes and graphene) can promote stem cell differentiation towards electro-active lineages and emphasize the promising role of stem cells in electro-active tissue regeneration (e.g., nerve and heart). In this review, we summarize the commonly applied conductive materials for scaffold construction and evaluate their contributions in the regeneration of electro-active tissues. •Stem cell, niche and their contributions in regenerative medicine are summarized.•Fabrication and cytotoxicity of commonly used conductive materials are reviewed.•Conductive scaffolds for guiding stem cell differentiation are well discussed.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>25491876</pmid><doi>10.1016/j.msec.2014.06.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2014-12, Vol.45, p.671-681
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_miscellaneous_1660095537
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Conductive scaffold
Construction materials
Construction specifications
Differentiation
Electric Conductivity
Graphite - chemistry
Humans
Medicine
Nanotubes, Carbon - chemistry
Polymers - chemistry
Regeneration
Regenerative
Regenerative Medicine
Scaffolds
Stem Cell Niche
Stem cells
Stem Cells - cytology
Tissue Engineering
Tissue Scaffolds
title The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electrically%20conductive%20scaffold%20as%20the%20skeleton%20of%20stem%20cell%20niche%20in%20regenerative%20medicine&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Jin,%20Guorui&rft.date=2014-12-01&rft.volume=45&rft.spage=671&rft.epage=681&rft.pages=671-681&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2014.06.004&rft_dat=%3Cproquest_cross%3E1660095537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635003854&rft_id=info:pmid/25491876&rft_els_id=S092849311400366X&rfr_iscdi=true