Rapid Identification of Areas of Interest in Thin Film Materials Libraries by Combining Electrical, Optical, X‑ray Diffraction, and Mechanical High-Throughput Measurements: A Case Study for the System Ni–Al

The efficient identification of compositional areas of interest in thin film materials systems fabricated by combinatorial deposition methods is essential in combinatorial materials science. We use a combination of compositional screening by EDX together with high-throughput measurements of electric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS combinatorial science 2014-12, Vol.16 (12), p.686-694
Hauptverfasser: Thienhaus, S., Naujoks, D., Pfetzing-Micklich, J., König, D., Ludwig, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 12
container_start_page 686
container_title ACS combinatorial science
container_volume 16
creator Thienhaus, S.
Naujoks, D.
Pfetzing-Micklich, J.
König, D.
Ludwig, A.
description The efficient identification of compositional areas of interest in thin film materials systems fabricated by combinatorial deposition methods is essential in combinatorial materials science. We use a combination of compositional screening by EDX together with high-throughput measurements of electrical and optical properties of thin film libraries to determine efficiently the areas of interest in a materials system. Areas of interest are compositions which show distinctive properties. The crystallinity of the thus determined areas is identified by X-ray diffraction. Additionally, by using automated nanoindentation across the materials library, mechanical data of the thin films can be obtained which complements the identification of areas of interest. The feasibility of this approach is demonstrated by using a Ni–Al thin film library as a reference system. The obtained results promise that this approach can be used for the case of ternary and higher order systems.
doi_str_mv 10.1021/co5000757
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660094113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1634727550</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-8e8f01b790d7cfad652ff7e80dacb591d5cfa88cbb21d62916d486161942b2273</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSMEolXpghdAd4MEUgO2Y-eH3Who6UhTKsEgsYsc_0xcJXawncXs-gqIN-MR-iR4NGVWLNjYx9efzr26J8teYvQOI4LfC8cQQhWrnmSnBLMyrxtKnx41IyfZeQh3iUGUNqREz7MTwoqSUdScZr-_8MlIWEllo9FG8GicBadh4RUPe7GyUXkVIhgLmz4dV2YY4YanquFDgLXpPPdGBeh2sHRjZ6yxW7gclIg-GQ4XcDvFg_j-cP_T8x18NFp7Lva9LoBbCTdK9NzuIbg22z7f9N7N236aY_riYfZqTAOGD7CAJQ8KvsZZ7kA7D7FPr12IaoTP5uH-12J4kT3TaTB1_nifZd-uLjfL63x9-2m1XKxzXtA65rWqNcJd1SBZCc1lyYjWlaqR5KJjDZYsVetadB3BsiQNLiWtS1zihpKOkKo4y94cfCfvfsxpQ-1oglDDwK1yc2hxWSLUUIyL_0ALWpGKMZTQtwdUeBeCV7qdvBm537UYtfvA22PgiX31aDt3o5JH8m-8CXh9ALgI7Z2bvU0L-YfRH2pttJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634727550</pqid></control><display><type>article</type><title>Rapid Identification of Areas of Interest in Thin Film Materials Libraries by Combining Electrical, Optical, X‑ray Diffraction, and Mechanical High-Throughput Measurements: A Case Study for the System Ni–Al</title><source>MEDLINE</source><source>ACS Publications</source><creator>Thienhaus, S. ; Naujoks, D. ; Pfetzing-Micklich, J. ; König, D. ; Ludwig, A.</creator><creatorcontrib>Thienhaus, S. ; Naujoks, D. ; Pfetzing-Micklich, J. ; König, D. ; Ludwig, A.</creatorcontrib><description>The efficient identification of compositional areas of interest in thin film materials systems fabricated by combinatorial deposition methods is essential in combinatorial materials science. We use a combination of compositional screening by EDX together with high-throughput measurements of electrical and optical properties of thin film libraries to determine efficiently the areas of interest in a materials system. Areas of interest are compositions which show distinctive properties. The crystallinity of the thus determined areas is identified by X-ray diffraction. Additionally, by using automated nanoindentation across the materials library, mechanical data of the thin films can be obtained which complements the identification of areas of interest. The feasibility of this approach is demonstrated by using a Ni–Al thin film library as a reference system. The obtained results promise that this approach can be used for the case of ternary and higher order systems.</description><identifier>ISSN: 2156-8952</identifier><identifier>EISSN: 2156-8944</identifier><identifier>DOI: 10.1021/co5000757</identifier><identifier>PMID: 25365409</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alloys - chemical synthesis ; Alloys - chemistry ; Aluminum - chemistry ; Combinatorial analysis ; Combinatorial Chemistry Techniques - methods ; Crystallinity ; Deposition ; Diffraction ; Elastic Modulus ; Electric Impedance ; Libraries ; Microscopy, Electron, Scanning ; Nickel ; Nickel - chemistry ; Reference systems ; Thin films ; X-Ray Diffraction ; X-rays</subject><ispartof>ACS combinatorial science, 2014-12, Vol.16 (12), p.686-694</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-8e8f01b790d7cfad652ff7e80dacb591d5cfa88cbb21d62916d486161942b2273</citedby><cites>FETCH-LOGICAL-a348t-8e8f01b790d7cfad652ff7e80dacb591d5cfa88cbb21d62916d486161942b2273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/co5000757$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/co5000757$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25365409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thienhaus, S.</creatorcontrib><creatorcontrib>Naujoks, D.</creatorcontrib><creatorcontrib>Pfetzing-Micklich, J.</creatorcontrib><creatorcontrib>König, D.</creatorcontrib><creatorcontrib>Ludwig, A.</creatorcontrib><title>Rapid Identification of Areas of Interest in Thin Film Materials Libraries by Combining Electrical, Optical, X‑ray Diffraction, and Mechanical High-Throughput Measurements: A Case Study for the System Ni–Al</title><title>ACS combinatorial science</title><addtitle>ACS Comb. Sci</addtitle><description>The efficient identification of compositional areas of interest in thin film materials systems fabricated by combinatorial deposition methods is essential in combinatorial materials science. We use a combination of compositional screening by EDX together with high-throughput measurements of electrical and optical properties of thin film libraries to determine efficiently the areas of interest in a materials system. Areas of interest are compositions which show distinctive properties. The crystallinity of the thus determined areas is identified by X-ray diffraction. Additionally, by using automated nanoindentation across the materials library, mechanical data of the thin films can be obtained which complements the identification of areas of interest. The feasibility of this approach is demonstrated by using a Ni–Al thin film library as a reference system. The obtained results promise that this approach can be used for the case of ternary and higher order systems.</description><subject>Alloys - chemical synthesis</subject><subject>Alloys - chemistry</subject><subject>Aluminum - chemistry</subject><subject>Combinatorial analysis</subject><subject>Combinatorial Chemistry Techniques - methods</subject><subject>Crystallinity</subject><subject>Deposition</subject><subject>Diffraction</subject><subject>Elastic Modulus</subject><subject>Electric Impedance</subject><subject>Libraries</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nickel</subject><subject>Nickel - chemistry</subject><subject>Reference systems</subject><subject>Thin films</subject><subject>X-Ray Diffraction</subject><subject>X-rays</subject><issn>2156-8952</issn><issn>2156-8944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhSMEolXpghdAd4MEUgO2Y-eH3Who6UhTKsEgsYsc_0xcJXawncXs-gqIN-MR-iR4NGVWLNjYx9efzr26J8teYvQOI4LfC8cQQhWrnmSnBLMyrxtKnx41IyfZeQh3iUGUNqREz7MTwoqSUdScZr-_8MlIWEllo9FG8GicBadh4RUPe7GyUXkVIhgLmz4dV2YY4YanquFDgLXpPPdGBeh2sHRjZ6yxW7gclIg-GQ4XcDvFg_j-cP_T8x18NFp7Lva9LoBbCTdK9NzuIbg22z7f9N7N236aY_riYfZqTAOGD7CAJQ8KvsZZ7kA7D7FPr12IaoTP5uH-12J4kT3TaTB1_nifZd-uLjfL63x9-2m1XKxzXtA65rWqNcJd1SBZCc1lyYjWlaqR5KJjDZYsVetadB3BsiQNLiWtS1zihpKOkKo4y94cfCfvfsxpQ-1oglDDwK1yc2hxWSLUUIyL_0ALWpGKMZTQtwdUeBeCV7qdvBm537UYtfvA22PgiX31aDt3o5JH8m-8CXh9ALgI7Z2bvU0L-YfRH2pttJY</recordid><startdate>20141208</startdate><enddate>20141208</enddate><creator>Thienhaus, S.</creator><creator>Naujoks, D.</creator><creator>Pfetzing-Micklich, J.</creator><creator>König, D.</creator><creator>Ludwig, A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141208</creationdate><title>Rapid Identification of Areas of Interest in Thin Film Materials Libraries by Combining Electrical, Optical, X‑ray Diffraction, and Mechanical High-Throughput Measurements: A Case Study for the System Ni–Al</title><author>Thienhaus, S. ; Naujoks, D. ; Pfetzing-Micklich, J. ; König, D. ; Ludwig, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-8e8f01b790d7cfad652ff7e80dacb591d5cfa88cbb21d62916d486161942b2273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloys - chemical synthesis</topic><topic>Alloys - chemistry</topic><topic>Aluminum - chemistry</topic><topic>Combinatorial analysis</topic><topic>Combinatorial Chemistry Techniques - methods</topic><topic>Crystallinity</topic><topic>Deposition</topic><topic>Diffraction</topic><topic>Elastic Modulus</topic><topic>Electric Impedance</topic><topic>Libraries</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nickel</topic><topic>Nickel - chemistry</topic><topic>Reference systems</topic><topic>Thin films</topic><topic>X-Ray Diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thienhaus, S.</creatorcontrib><creatorcontrib>Naujoks, D.</creatorcontrib><creatorcontrib>Pfetzing-Micklich, J.</creatorcontrib><creatorcontrib>König, D.</creatorcontrib><creatorcontrib>Ludwig, A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS combinatorial science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thienhaus, S.</au><au>Naujoks, D.</au><au>Pfetzing-Micklich, J.</au><au>König, D.</au><au>Ludwig, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Identification of Areas of Interest in Thin Film Materials Libraries by Combining Electrical, Optical, X‑ray Diffraction, and Mechanical High-Throughput Measurements: A Case Study for the System Ni–Al</atitle><jtitle>ACS combinatorial science</jtitle><addtitle>ACS Comb. Sci</addtitle><date>2014-12-08</date><risdate>2014</risdate><volume>16</volume><issue>12</issue><spage>686</spage><epage>694</epage><pages>686-694</pages><issn>2156-8952</issn><eissn>2156-8944</eissn><abstract>The efficient identification of compositional areas of interest in thin film materials systems fabricated by combinatorial deposition methods is essential in combinatorial materials science. We use a combination of compositional screening by EDX together with high-throughput measurements of electrical and optical properties of thin film libraries to determine efficiently the areas of interest in a materials system. Areas of interest are compositions which show distinctive properties. The crystallinity of the thus determined areas is identified by X-ray diffraction. Additionally, by using automated nanoindentation across the materials library, mechanical data of the thin films can be obtained which complements the identification of areas of interest. The feasibility of this approach is demonstrated by using a Ni–Al thin film library as a reference system. The obtained results promise that this approach can be used for the case of ternary and higher order systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25365409</pmid><doi>10.1021/co5000757</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2156-8952
ispartof ACS combinatorial science, 2014-12, Vol.16 (12), p.686-694
issn 2156-8952
2156-8944
language eng
recordid cdi_proquest_miscellaneous_1660094113
source MEDLINE; ACS Publications
subjects Alloys - chemical synthesis
Alloys - chemistry
Aluminum - chemistry
Combinatorial analysis
Combinatorial Chemistry Techniques - methods
Crystallinity
Deposition
Diffraction
Elastic Modulus
Electric Impedance
Libraries
Microscopy, Electron, Scanning
Nickel
Nickel - chemistry
Reference systems
Thin films
X-Ray Diffraction
X-rays
title Rapid Identification of Areas of Interest in Thin Film Materials Libraries by Combining Electrical, Optical, X‑ray Diffraction, and Mechanical High-Throughput Measurements: A Case Study for the System Ni–Al
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Identification%20of%20Areas%20of%20Interest%20in%20Thin%20Film%20Materials%20Libraries%20by%20Combining%20Electrical,%20Optical,%20X%E2%80%91ray%20Diffraction,%20and%20Mechanical%20High-Throughput%20Measurements:%20A%20Case%20Study%20for%20the%20System%20Ni%E2%80%93Al&rft.jtitle=ACS%20combinatorial%20science&rft.au=Thienhaus,%20S.&rft.date=2014-12-08&rft.volume=16&rft.issue=12&rft.spage=686&rft.epage=694&rft.pages=686-694&rft.issn=2156-8952&rft.eissn=2156-8944&rft_id=info:doi/10.1021/co5000757&rft_dat=%3Cproquest_cross%3E1634727550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634727550&rft_id=info:pmid/25365409&rfr_iscdi=true