Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics

This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2013-02, Vol.26 (1), p.112-121
Hauptverfasser: Im, Jongbin, Park, Jungsun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 1
container_start_page 112
container_title Chinese journal of aeronautics
container_volume 26
creator Im, Jongbin
Park, Jungsun
description This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.
doi_str_mv 10.1016/j.cja.2012.12.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660091780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1000936112000301</els_id><sourcerecordid>1660091780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7e3aa8f44cda6960a27a7665ea59641f200cf5295cc7f1e3d34b74ccd19a3c073</originalsourceid><addsrcrecordid>eNp9kLFOHDEQhrcgEgR4ADqXFLljvN6zWVEFlIRISCkCtTXMzh4-7a4vHm-i4-nx6WjSII00zff_o_mq6kLDUoO2V5slbXBZg66XZaCuj6oTDQCL1lh9XH0W2QCY1mk4qabfOdILSg6kJKeZ8pxwUHGbwxheMYc4qVnCtFZbTAUaWMk_TON_xBclc0pxjZnVGDseROHUqVvcsQScSnHB9ifkrPrU4yB8_r5Pq6fv3x7v7hcPv378vPv6sCDjTF44NojXfdNQh7a1gLVDZ-2KcdXaRvc1APWrul0RuV6z6Uzz7BqiTrdoCJw5rS4PvdsU_8ws2Y9BiIcBJ46zeG0tQKvdNRRUH1BKUSRx77cpjJh2XoPf-_QbX3z6vU9fpvgsmZtDprzKfwMnLxR4Iu5CYsq-i-GD9Bv65YL9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660091780</pqid></control><display><type>article</type><title>Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Im, Jongbin ; Park, Jungsun</creator><creatorcontrib>Im, Jongbin ; Park, Jungsun</creatorcontrib><description>This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2012.12.022</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Bayesian analysis ; Bayesian statistics ; Kriging ; Mathematical analysis ; Mathematical models ; Optimization ; Particle swarm optimization (PSO) ; Response surface method (RSM) ; Statistics ; Stochasticity ; Swarm intelligence</subject><ispartof>Chinese journal of aeronautics, 2013-02, Vol.26 (1), p.112-121</ispartof><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7e3aa8f44cda6960a27a7665ea59641f200cf5295cc7f1e3d34b74ccd19a3c073</citedby><cites>FETCH-LOGICAL-c373t-7e3aa8f44cda6960a27a7665ea59641f200cf5295cc7f1e3d34b74ccd19a3c073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1000936112000301$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Im, Jongbin</creatorcontrib><creatorcontrib>Park, Jungsun</creatorcontrib><title>Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics</title><title>Chinese journal of aeronautics</title><description>This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Bayesian statistics</subject><subject>Kriging</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Particle swarm optimization (PSO)</subject><subject>Response surface method (RSM)</subject><subject>Statistics</subject><subject>Stochasticity</subject><subject>Swarm intelligence</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOHDEQhrcgEgR4ADqXFLljvN6zWVEFlIRISCkCtTXMzh4-7a4vHm-i4-nx6WjSII00zff_o_mq6kLDUoO2V5slbXBZg66XZaCuj6oTDQCL1lh9XH0W2QCY1mk4qabfOdILSg6kJKeZ8pxwUHGbwxheMYc4qVnCtFZbTAUaWMk_TON_xBclc0pxjZnVGDseROHUqVvcsQScSnHB9ifkrPrU4yB8_r5Pq6fv3x7v7hcPv378vPv6sCDjTF44NojXfdNQh7a1gLVDZ-2KcdXaRvc1APWrul0RuV6z6Uzz7BqiTrdoCJw5rS4PvdsU_8ws2Y9BiIcBJ46zeG0tQKvdNRRUH1BKUSRx77cpjJh2XoPf-_QbX3z6vU9fpvgsmZtDprzKfwMnLxR4Iu5CYsq-i-GD9Bv65YL9</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Im, Jongbin</creator><creator>Park, Jungsun</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201302</creationdate><title>Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics</title><author>Im, Jongbin ; Park, Jungsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7e3aa8f44cda6960a27a7665ea59641f200cf5295cc7f1e3d34b74ccd19a3c073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Bayesian statistics</topic><topic>Kriging</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Particle swarm optimization (PSO)</topic><topic>Response surface method (RSM)</topic><topic>Statistics</topic><topic>Stochasticity</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Jongbin</creatorcontrib><creatorcontrib>Park, Jungsun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Jongbin</au><au>Park, Jungsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2013-02</date><risdate>2013</risdate><volume>26</volume><issue>1</issue><spage>112</spage><epage>121</epage><pages>112-121</pages><issn>1000-9361</issn><abstract>This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2012.12.022</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2013-02, Vol.26 (1), p.112-121
issn 1000-9361
language eng
recordid cdi_proquest_miscellaneous_1660091780
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Bayesian analysis
Bayesian statistics
Kriging
Mathematical analysis
Mathematical models
Optimization
Particle swarm optimization (PSO)
Response surface method (RSM)
Statistics
Stochasticity
Swarm intelligence
title Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20structural%20optimization%20using%20particle%20swarm%20optimization,%20surrogate%20models%20and%20Bayesian%20statistics&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=Im,%20Jongbin&rft.date=2013-02&rft.volume=26&rft.issue=1&rft.spage=112&rft.epage=121&rft.pages=112-121&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2012.12.022&rft_dat=%3Cproquest_cross%3E1660091780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660091780&rft_id=info:pmid/&rft_els_id=S1000936112000301&rfr_iscdi=true