Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics
This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based...
Gespeichert in:
Veröffentlicht in: | Chinese journal of aeronautics 2013-02, Vol.26 (1), p.112-121 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | 1 |
container_start_page | 112 |
container_title | Chinese journal of aeronautics |
container_volume | 26 |
creator | Im, Jongbin Park, Jungsun |
description | This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem. |
doi_str_mv | 10.1016/j.cja.2012.12.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660091780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1000936112000301</els_id><sourcerecordid>1660091780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-7e3aa8f44cda6960a27a7665ea59641f200cf5295cc7f1e3d34b74ccd19a3c073</originalsourceid><addsrcrecordid>eNp9kLFOHDEQhrcgEgR4ADqXFLljvN6zWVEFlIRISCkCtTXMzh4-7a4vHm-i4-nx6WjSII00zff_o_mq6kLDUoO2V5slbXBZg66XZaCuj6oTDQCL1lh9XH0W2QCY1mk4qabfOdILSg6kJKeZ8pxwUHGbwxheMYc4qVnCtFZbTAUaWMk_TON_xBclc0pxjZnVGDseROHUqVvcsQScSnHB9ifkrPrU4yB8_r5Pq6fv3x7v7hcPv378vPv6sCDjTF44NojXfdNQh7a1gLVDZ-2KcdXaRvc1APWrul0RuV6z6Uzz7BqiTrdoCJw5rS4PvdsU_8ws2Y9BiIcBJ46zeG0tQKvdNRRUH1BKUSRx77cpjJh2XoPf-_QbX3z6vU9fpvgsmZtDprzKfwMnLxR4Iu5CYsq-i-GD9Bv65YL9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660091780</pqid></control><display><type>article</type><title>Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Im, Jongbin ; Park, Jungsun</creator><creatorcontrib>Im, Jongbin ; Park, Jungsun</creatorcontrib><description>This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2012.12.022</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Bayesian analysis ; Bayesian statistics ; Kriging ; Mathematical analysis ; Mathematical models ; Optimization ; Particle swarm optimization (PSO) ; Response surface method (RSM) ; Statistics ; Stochasticity ; Swarm intelligence</subject><ispartof>Chinese journal of aeronautics, 2013-02, Vol.26 (1), p.112-121</ispartof><rights>2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-7e3aa8f44cda6960a27a7665ea59641f200cf5295cc7f1e3d34b74ccd19a3c073</citedby><cites>FETCH-LOGICAL-c373t-7e3aa8f44cda6960a27a7665ea59641f200cf5295cc7f1e3d34b74ccd19a3c073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1000936112000301$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Im, Jongbin</creatorcontrib><creatorcontrib>Park, Jungsun</creatorcontrib><title>Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics</title><title>Chinese journal of aeronautics</title><description>This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Bayesian statistics</subject><subject>Kriging</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Particle swarm optimization (PSO)</subject><subject>Response surface method (RSM)</subject><subject>Statistics</subject><subject>Stochasticity</subject><subject>Swarm intelligence</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOHDEQhrcgEgR4ADqXFLljvN6zWVEFlIRISCkCtTXMzh4-7a4vHm-i4-nx6WjSII00zff_o_mq6kLDUoO2V5slbXBZg66XZaCuj6oTDQCL1lh9XH0W2QCY1mk4qabfOdILSg6kJKeZ8pxwUHGbwxheMYc4qVnCtFZbTAUaWMk_TON_xBclc0pxjZnVGDseROHUqVvcsQScSnHB9ifkrPrU4yB8_r5Pq6fv3x7v7hcPv378vPv6sCDjTF44NojXfdNQh7a1gLVDZ-2KcdXaRvc1APWrul0RuV6z6Uzz7BqiTrdoCJw5rS4PvdsU_8ws2Y9BiIcBJ46zeG0tQKvdNRRUH1BKUSRx77cpjJh2XoPf-_QbX3z6vU9fpvgsmZtDprzKfwMnLxR4Iu5CYsq-i-GD9Bv65YL9</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Im, Jongbin</creator><creator>Park, Jungsun</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201302</creationdate><title>Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics</title><author>Im, Jongbin ; Park, Jungsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-7e3aa8f44cda6960a27a7665ea59641f200cf5295cc7f1e3d34b74ccd19a3c073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Bayesian statistics</topic><topic>Kriging</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Particle swarm optimization (PSO)</topic><topic>Response surface method (RSM)</topic><topic>Statistics</topic><topic>Stochasticity</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Jongbin</creatorcontrib><creatorcontrib>Park, Jungsun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Jongbin</au><au>Park, Jungsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2013-02</date><risdate>2013</risdate><volume>26</volume><issue>1</issue><spage>112</spage><epage>121</epage><pages>112-121</pages><issn>1000-9361</issn><abstract>This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2012.12.022</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9361 |
ispartof | Chinese journal of aeronautics, 2013-02, Vol.26 (1), p.112-121 |
issn | 1000-9361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660091780 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Bayesian analysis Bayesian statistics Kriging Mathematical analysis Mathematical models Optimization Particle swarm optimization (PSO) Response surface method (RSM) Statistics Stochasticity Swarm intelligence |
title | Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20structural%20optimization%20using%20particle%20swarm%20optimization,%20surrogate%20models%20and%20Bayesian%20statistics&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=Im,%20Jongbin&rft.date=2013-02&rft.volume=26&rft.issue=1&rft.spage=112&rft.epage=121&rft.pages=112-121&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2012.12.022&rft_dat=%3Cproquest_cross%3E1660091780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660091780&rft_id=info:pmid/&rft_els_id=S1000936112000301&rfr_iscdi=true |