Unfamiliar metabolic links in the central carbon metabolism

•We describe novel enzyme links in the central carbon metabolism.•Acetyl-CoA plus two bicarbonate is converted via 3-hydroxypropionate into succinyl-CoA.•Anaerobically, acetyl-CoA plus two CO2 is converted via pyruvate into succinyl-CoA.•Succinyl-CoA is converted via 4-hydroxybutyrate to two molecul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biotechnology 2014-12, Vol.192, p.314-322
Hauptverfasser: Fuchs, Georg, Berg, Ivan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue
container_start_page 314
container_title Journal of biotechnology
container_volume 192
creator Fuchs, Georg
Berg, Ivan A.
description •We describe novel enzyme links in the central carbon metabolism.•Acetyl-CoA plus two bicarbonate is converted via 3-hydroxypropionate into succinyl-CoA.•Anaerobically, acetyl-CoA plus two CO2 is converted via pyruvate into succinyl-CoA.•Succinyl-CoA is converted via 4-hydroxybutyrate to two molecules of acetyl-CoA.•Novel reactions and pathways involving C5 dicarboxylic acids are described. The central carbon metabolism of all organisms is considered to follow a well established fixed scheme. However, recent studies of autotrophic carbon fixation in prokaryotes revealed unfamiliar metabolic links. A new route interconnects acetyl-coenzyme A (CoA) via 3-hydroxypropionate with succinyl-CoA. Succinyl-CoA in turn may be metabolized via 4-hydroxybutyrate to two molecules of acetyl-CoA; a reversal of this route would result in the assimilation of two molecules of acetyl-CoA into C4 compounds. C5-dicarboxylic acids are a rather neglected class of metabolites; yet, they play a key role not only in one of the CO2 fixation cycles, but also in two acetate assimilation pathways that replace the glyoxylate cycle. C5 compounds such as ethylmalonate, methylsuccinate, methylmalate, mesaconate, itaconate and citramalate or their CoA esters are thereby linked to the acetyl-CoA, propionyl-CoA, glyoxylate and pyruvate pools. A novel carboxylase/reductase converts crotonyl-CoA into ethylmalonyl-CoA; similar reductive carboxylations apply to other alpha-beta-unsaturated carboxy-CoA thioesters. These unfamiliar metabolic links may provide useful tools for metabolic engineering.
doi_str_mv 10.1016/j.jbiotec.2014.02.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660090364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168165614000881</els_id><sourcerecordid>1660090364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-e4f9d8215d938dbedc476b26149bfc488b89ab8cfc18e80c6a6801e3f4922bd33</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgiq3VR1Bm6WbG3CeDC5HiDQpu7DokmTOYOpeaTAXf3pTWbrvK5jvnkP9H6JrggmAi71bFyvphBFdQTHiBaYGJOEFTokqWcyXZKZomp3IihZygixhXGGNeCXKOJpSLUnLGp-h-2Tem8603IetgNHZovcta33_FzPfZ-AmZg34Mps2cCXboDyp2l-isMW2Eq_07Q8vnp4_5a754f3mbPy5yJzAZc-BNVStKRF0xVVuoHS-lpZLwyjaOK2VVZaxyjSMKFHbSSIUJsIZXlNqasRm63e1dh-F7A3HUnY8O2tb0MGyiJlJiXGGWfnSc8jLFxZM-ThkvqaClSFTsqAtDjAEavQ6-M-FXE6y3beiV3reht21oTHVqI83d7E9sbAf1Yeo__gQedgBSfD8ego7OQ--g9gHcqOvBHznxByNcnIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634725275</pqid></control><display><type>article</type><title>Unfamiliar metabolic links in the central carbon metabolism</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fuchs, Georg ; Berg, Ivan A.</creator><creatorcontrib>Fuchs, Georg ; Berg, Ivan A.</creatorcontrib><description>•We describe novel enzyme links in the central carbon metabolism.•Acetyl-CoA plus two bicarbonate is converted via 3-hydroxypropionate into succinyl-CoA.•Anaerobically, acetyl-CoA plus two CO2 is converted via pyruvate into succinyl-CoA.•Succinyl-CoA is converted via 4-hydroxybutyrate to two molecules of acetyl-CoA.•Novel reactions and pathways involving C5 dicarboxylic acids are described. The central carbon metabolism of all organisms is considered to follow a well established fixed scheme. However, recent studies of autotrophic carbon fixation in prokaryotes revealed unfamiliar metabolic links. A new route interconnects acetyl-coenzyme A (CoA) via 3-hydroxypropionate with succinyl-CoA. Succinyl-CoA in turn may be metabolized via 4-hydroxybutyrate to two molecules of acetyl-CoA; a reversal of this route would result in the assimilation of two molecules of acetyl-CoA into C4 compounds. C5-dicarboxylic acids are a rather neglected class of metabolites; yet, they play a key role not only in one of the CO2 fixation cycles, but also in two acetate assimilation pathways that replace the glyoxylate cycle. C5 compounds such as ethylmalonate, methylsuccinate, methylmalate, mesaconate, itaconate and citramalate or their CoA esters are thereby linked to the acetyl-CoA, propionyl-CoA, glyoxylate and pyruvate pools. A novel carboxylase/reductase converts crotonyl-CoA into ethylmalonyl-CoA; similar reductive carboxylations apply to other alpha-beta-unsaturated carboxy-CoA thioesters. These unfamiliar metabolic links may provide useful tools for metabolic engineering.</description><identifier>ISSN: 0168-1656</identifier><identifier>EISSN: 1873-4863</identifier><identifier>DOI: 10.1016/j.jbiotec.2014.02.015</identifier><identifier>PMID: 24576434</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3-Hydroxypropionate ; 4-Hydroxybutyrate ; Acetates ; Acetyl Coenzyme A - chemistry ; Acetyl Coenzyme A - metabolism ; Acetyl-CoA assimilation ; Archaea - metabolism ; Assimilation ; Autotrophic CO2 fixation ; Bacteria - metabolism ; C5 dicarboxylic acids ; Carbon ; Carbon - chemistry ; Carbon - metabolism ; Fixation ; Hydroxybutyrates - metabolism ; Lactic Acid - analogs &amp; derivatives ; Lactic Acid - metabolism ; Links ; Metabolic Engineering ; Metabolic Networks and Pathways ; Metabolism ; Prokaryotes ; Reductases</subject><ispartof>Journal of biotechnology, 2014-12, Vol.192, p.314-322</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-e4f9d8215d938dbedc476b26149bfc488b89ab8cfc18e80c6a6801e3f4922bd33</citedby><cites>FETCH-LOGICAL-c501t-e4f9d8215d938dbedc476b26149bfc488b89ab8cfc18e80c6a6801e3f4922bd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbiotec.2014.02.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24576434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuchs, Georg</creatorcontrib><creatorcontrib>Berg, Ivan A.</creatorcontrib><title>Unfamiliar metabolic links in the central carbon metabolism</title><title>Journal of biotechnology</title><addtitle>J Biotechnol</addtitle><description>•We describe novel enzyme links in the central carbon metabolism.•Acetyl-CoA plus two bicarbonate is converted via 3-hydroxypropionate into succinyl-CoA.•Anaerobically, acetyl-CoA plus two CO2 is converted via pyruvate into succinyl-CoA.•Succinyl-CoA is converted via 4-hydroxybutyrate to two molecules of acetyl-CoA.•Novel reactions and pathways involving C5 dicarboxylic acids are described. The central carbon metabolism of all organisms is considered to follow a well established fixed scheme. However, recent studies of autotrophic carbon fixation in prokaryotes revealed unfamiliar metabolic links. A new route interconnects acetyl-coenzyme A (CoA) via 3-hydroxypropionate with succinyl-CoA. Succinyl-CoA in turn may be metabolized via 4-hydroxybutyrate to two molecules of acetyl-CoA; a reversal of this route would result in the assimilation of two molecules of acetyl-CoA into C4 compounds. C5-dicarboxylic acids are a rather neglected class of metabolites; yet, they play a key role not only in one of the CO2 fixation cycles, but also in two acetate assimilation pathways that replace the glyoxylate cycle. C5 compounds such as ethylmalonate, methylsuccinate, methylmalate, mesaconate, itaconate and citramalate or their CoA esters are thereby linked to the acetyl-CoA, propionyl-CoA, glyoxylate and pyruvate pools. A novel carboxylase/reductase converts crotonyl-CoA into ethylmalonyl-CoA; similar reductive carboxylations apply to other alpha-beta-unsaturated carboxy-CoA thioesters. These unfamiliar metabolic links may provide useful tools for metabolic engineering.</description><subject>3-Hydroxypropionate</subject><subject>4-Hydroxybutyrate</subject><subject>Acetates</subject><subject>Acetyl Coenzyme A - chemistry</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Acetyl-CoA assimilation</subject><subject>Archaea - metabolism</subject><subject>Assimilation</subject><subject>Autotrophic CO2 fixation</subject><subject>Bacteria - metabolism</subject><subject>C5 dicarboxylic acids</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon - metabolism</subject><subject>Fixation</subject><subject>Hydroxybutyrates - metabolism</subject><subject>Lactic Acid - analogs &amp; derivatives</subject><subject>Lactic Acid - metabolism</subject><subject>Links</subject><subject>Metabolic Engineering</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Prokaryotes</subject><subject>Reductases</subject><issn>0168-1656</issn><issn>1873-4863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctKAzEUBuAgiq3VR1Bm6WbG3CeDC5HiDQpu7DokmTOYOpeaTAXf3pTWbrvK5jvnkP9H6JrggmAi71bFyvphBFdQTHiBaYGJOEFTokqWcyXZKZomp3IihZygixhXGGNeCXKOJpSLUnLGp-h-2Tem8603IetgNHZovcta33_FzPfZ-AmZg34Mps2cCXboDyp2l-isMW2Eq_07Q8vnp4_5a754f3mbPy5yJzAZc-BNVStKRF0xVVuoHS-lpZLwyjaOK2VVZaxyjSMKFHbSSIUJsIZXlNqasRm63e1dh-F7A3HUnY8O2tb0MGyiJlJiXGGWfnSc8jLFxZM-ThkvqaClSFTsqAtDjAEavQ6-M-FXE6y3beiV3reht21oTHVqI83d7E9sbAf1Yeo__gQedgBSfD8ego7OQ--g9gHcqOvBHznxByNcnIM</recordid><startdate>20141220</startdate><enddate>20141220</enddate><creator>Fuchs, Georg</creator><creator>Berg, Ivan A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20141220</creationdate><title>Unfamiliar metabolic links in the central carbon metabolism</title><author>Fuchs, Georg ; Berg, Ivan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-e4f9d8215d938dbedc476b26149bfc488b89ab8cfc18e80c6a6801e3f4922bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3-Hydroxypropionate</topic><topic>4-Hydroxybutyrate</topic><topic>Acetates</topic><topic>Acetyl Coenzyme A - chemistry</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Acetyl-CoA assimilation</topic><topic>Archaea - metabolism</topic><topic>Assimilation</topic><topic>Autotrophic CO2 fixation</topic><topic>Bacteria - metabolism</topic><topic>C5 dicarboxylic acids</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon - metabolism</topic><topic>Fixation</topic><topic>Hydroxybutyrates - metabolism</topic><topic>Lactic Acid - analogs &amp; derivatives</topic><topic>Lactic Acid - metabolism</topic><topic>Links</topic><topic>Metabolic Engineering</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Prokaryotes</topic><topic>Reductases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchs, Georg</creatorcontrib><creatorcontrib>Berg, Ivan A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchs, Georg</au><au>Berg, Ivan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unfamiliar metabolic links in the central carbon metabolism</atitle><jtitle>Journal of biotechnology</jtitle><addtitle>J Biotechnol</addtitle><date>2014-12-20</date><risdate>2014</risdate><volume>192</volume><spage>314</spage><epage>322</epage><pages>314-322</pages><issn>0168-1656</issn><eissn>1873-4863</eissn><abstract>•We describe novel enzyme links in the central carbon metabolism.•Acetyl-CoA plus two bicarbonate is converted via 3-hydroxypropionate into succinyl-CoA.•Anaerobically, acetyl-CoA plus two CO2 is converted via pyruvate into succinyl-CoA.•Succinyl-CoA is converted via 4-hydroxybutyrate to two molecules of acetyl-CoA.•Novel reactions and pathways involving C5 dicarboxylic acids are described. The central carbon metabolism of all organisms is considered to follow a well established fixed scheme. However, recent studies of autotrophic carbon fixation in prokaryotes revealed unfamiliar metabolic links. A new route interconnects acetyl-coenzyme A (CoA) via 3-hydroxypropionate with succinyl-CoA. Succinyl-CoA in turn may be metabolized via 4-hydroxybutyrate to two molecules of acetyl-CoA; a reversal of this route would result in the assimilation of two molecules of acetyl-CoA into C4 compounds. C5-dicarboxylic acids are a rather neglected class of metabolites; yet, they play a key role not only in one of the CO2 fixation cycles, but also in two acetate assimilation pathways that replace the glyoxylate cycle. C5 compounds such as ethylmalonate, methylsuccinate, methylmalate, mesaconate, itaconate and citramalate or their CoA esters are thereby linked to the acetyl-CoA, propionyl-CoA, glyoxylate and pyruvate pools. A novel carboxylase/reductase converts crotonyl-CoA into ethylmalonyl-CoA; similar reductive carboxylations apply to other alpha-beta-unsaturated carboxy-CoA thioesters. These unfamiliar metabolic links may provide useful tools for metabolic engineering.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>24576434</pmid><doi>10.1016/j.jbiotec.2014.02.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1656
ispartof Journal of biotechnology, 2014-12, Vol.192, p.314-322
issn 0168-1656
1873-4863
language eng
recordid cdi_proquest_miscellaneous_1660090364
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects 3-Hydroxypropionate
4-Hydroxybutyrate
Acetates
Acetyl Coenzyme A - chemistry
Acetyl Coenzyme A - metabolism
Acetyl-CoA assimilation
Archaea - metabolism
Assimilation
Autotrophic CO2 fixation
Bacteria - metabolism
C5 dicarboxylic acids
Carbon
Carbon - chemistry
Carbon - metabolism
Fixation
Hydroxybutyrates - metabolism
Lactic Acid - analogs & derivatives
Lactic Acid - metabolism
Links
Metabolic Engineering
Metabolic Networks and Pathways
Metabolism
Prokaryotes
Reductases
title Unfamiliar metabolic links in the central carbon metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unfamiliar%20metabolic%20links%20in%20the%20central%20carbon%20metabolism&rft.jtitle=Journal%20of%20biotechnology&rft.au=Fuchs,%20Georg&rft.date=2014-12-20&rft.volume=192&rft.spage=314&rft.epage=322&rft.pages=314-322&rft.issn=0168-1656&rft.eissn=1873-4863&rft_id=info:doi/10.1016/j.jbiotec.2014.02.015&rft_dat=%3Cproquest_cross%3E1660090364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634725275&rft_id=info:pmid/24576434&rft_els_id=S0168165614000881&rfr_iscdi=true