Simplified formation process for Cu2ZnSnS4-based solar cells
Cu2ZnSn(S,Se)4 absorber layers for thin film solar cells contain up to five separate elements making it challenging to synthesize due to the necessity of achieving chemical uniformity on a nanometer scale. In a two-step synthesis procedure a metallic Cu-Sn-Zn precursor can be converted uniformly to...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2014-12, Vol.573, p.148-158 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | |
container_start_page | 148 |
container_title | Thin solid films |
container_volume | 573 |
creator | Berg, Dominik M. Crossay, Alexandre Guillot, Jérôme Izquierdo-Roca, Victor Pérez-Rodriguez, Alejandro Ahmed, Shafaat Deligianni, Hariklia Siebentritt, Susanne Dale, Phillip J. |
description | Cu2ZnSn(S,Se)4 absorber layers for thin film solar cells contain up to five separate elements making it challenging to synthesize due to the necessity of achieving chemical uniformity on a nanometer scale. In a two-step synthesis procedure a metallic Cu-Sn-Zn precursor can be converted uniformly to the semiconductor by the reaction with gaseous chalcogens. Here, it is demonstrated that only a simplified precursor containing Cu and Zn is required to form the Cu2ZnSnS4-semiconductor when the annealing step is carried out in the presence of gaseous tin sulfide and sulfur. It is shown that the formation of Cu2ZnSnS4 progresses in a self-limiting manner, independently of the amount of sulfur and tin-sulfide provided. Using ex-situ investigations, the reaction pathway is resolved and a model of the reaction process is established. The model furthermore explains the formation of the undesired ZnS phase at the back interface of the absorber, limiting the device performance. The influence of various annealing conditions on the formation of ZnS and hence the device performance with efficiencies of up to 2.3 % is shown. Lowering of the background forming gas pressure to 100 Pa was revealed to be beneficial as it influences the distribution of ZnS at the back interface.
•Formation of Cu2ZnSnS4 thin films from a precursor only containing Cu and Zn•Self-limiting incorporation of sulfur and tin sulfide from the gas phase•Investigation of reaction pathway from Cu-Zn precursor to Cu2ZnSnS4 absorber layer•Presence of ZnS at back interface limits the device performance•Discussing of benefits of increased kinetics for device performance |
doi_str_mv | 10.1016/j.tsf.2014.11.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660090338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609014010980</els_id><sourcerecordid>1660090338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-c20b376dbe1dfe60f8630731a7787269e0ac33c4c9f5ef2172dcc626d160bcb73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG89emmdSWrSohdZXBUWPKxevIQ0nUCWfqxJV_Dfm7KePQ0Mzzu88zB2jVAgoLzdFVN0BQcsC8QCkJ-wBVaqzrkSeMoWACXkEmo4Zxcx7gASwsWCPWx9v--889Rmbgy9mfw4ZPswWopx3mSrA_8ctsO2zBsTExXHzoTMUtfFS3bmTBfp6m8u2cf66X31km_enl9Xj5vcCqmm3HJohJJtQ9g6kuAqKSDVMkpVisuawFghbGlrd0eOo-KttZLLFiU0tlFiyW6Od1OvrwPFSfc-zg3MQOMhapQS0mtCVAnFI2rDGGMgp_fB9yb8aAQ9m9I7nUzp2ZRG1ElDytwfM5R--PYUdLSeBkutD2Qn3Y7-n_QvwjlwNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660090338</pqid></control><display><type>article</type><title>Simplified formation process for Cu2ZnSnS4-based solar cells</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Berg, Dominik M. ; Crossay, Alexandre ; Guillot, Jérôme ; Izquierdo-Roca, Victor ; Pérez-Rodriguez, Alejandro ; Ahmed, Shafaat ; Deligianni, Hariklia ; Siebentritt, Susanne ; Dale, Phillip J.</creator><creatorcontrib>Berg, Dominik M. ; Crossay, Alexandre ; Guillot, Jérôme ; Izquierdo-Roca, Victor ; Pérez-Rodriguez, Alejandro ; Ahmed, Shafaat ; Deligianni, Hariklia ; Siebentritt, Susanne ; Dale, Phillip J.</creatorcontrib><description>Cu2ZnSn(S,Se)4 absorber layers for thin film solar cells contain up to five separate elements making it challenging to synthesize due to the necessity of achieving chemical uniformity on a nanometer scale. In a two-step synthesis procedure a metallic Cu-Sn-Zn precursor can be converted uniformly to the semiconductor by the reaction with gaseous chalcogens. Here, it is demonstrated that only a simplified precursor containing Cu and Zn is required to form the Cu2ZnSnS4-semiconductor when the annealing step is carried out in the presence of gaseous tin sulfide and sulfur. It is shown that the formation of Cu2ZnSnS4 progresses in a self-limiting manner, independently of the amount of sulfur and tin-sulfide provided. Using ex-situ investigations, the reaction pathway is resolved and a model of the reaction process is established. The model furthermore explains the formation of the undesired ZnS phase at the back interface of the absorber, limiting the device performance. The influence of various annealing conditions on the formation of ZnS and hence the device performance with efficiencies of up to 2.3 % is shown. Lowering of the background forming gas pressure to 100 Pa was revealed to be beneficial as it influences the distribution of ZnS at the back interface.
•Formation of Cu2ZnSnS4 thin films from a precursor only containing Cu and Zn•Self-limiting incorporation of sulfur and tin sulfide from the gas phase•Investigation of reaction pathway from Cu-Zn precursor to Cu2ZnSnS4 absorber layer•Presence of ZnS at back interface limits the device performance•Discussing of benefits of increased kinetics for device performance</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2014.11.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Annealing ; Copper ; Copper zinc tin sulfide ; Devices ; Electrodeposition ; Equilibrium reaction ; Formations ; Kesterite ; Reactive annealing ; Semiconductors ; Solar cells ; Sulfur ; Thin films ; Tin sulfide ; Zinc sulfides</subject><ispartof>Thin solid films, 2014-12, Vol.573, p.148-158</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-c20b376dbe1dfe60f8630731a7787269e0ac33c4c9f5ef2172dcc626d160bcb73</citedby><cites>FETCH-LOGICAL-c367t-c20b376dbe1dfe60f8630731a7787269e0ac33c4c9f5ef2172dcc626d160bcb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2014.11.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Berg, Dominik M.</creatorcontrib><creatorcontrib>Crossay, Alexandre</creatorcontrib><creatorcontrib>Guillot, Jérôme</creatorcontrib><creatorcontrib>Izquierdo-Roca, Victor</creatorcontrib><creatorcontrib>Pérez-Rodriguez, Alejandro</creatorcontrib><creatorcontrib>Ahmed, Shafaat</creatorcontrib><creatorcontrib>Deligianni, Hariklia</creatorcontrib><creatorcontrib>Siebentritt, Susanne</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><title>Simplified formation process for Cu2ZnSnS4-based solar cells</title><title>Thin solid films</title><description>Cu2ZnSn(S,Se)4 absorber layers for thin film solar cells contain up to five separate elements making it challenging to synthesize due to the necessity of achieving chemical uniformity on a nanometer scale. In a two-step synthesis procedure a metallic Cu-Sn-Zn precursor can be converted uniformly to the semiconductor by the reaction with gaseous chalcogens. Here, it is demonstrated that only a simplified precursor containing Cu and Zn is required to form the Cu2ZnSnS4-semiconductor when the annealing step is carried out in the presence of gaseous tin sulfide and sulfur. It is shown that the formation of Cu2ZnSnS4 progresses in a self-limiting manner, independently of the amount of sulfur and tin-sulfide provided. Using ex-situ investigations, the reaction pathway is resolved and a model of the reaction process is established. The model furthermore explains the formation of the undesired ZnS phase at the back interface of the absorber, limiting the device performance. The influence of various annealing conditions on the formation of ZnS and hence the device performance with efficiencies of up to 2.3 % is shown. Lowering of the background forming gas pressure to 100 Pa was revealed to be beneficial as it influences the distribution of ZnS at the back interface.
•Formation of Cu2ZnSnS4 thin films from a precursor only containing Cu and Zn•Self-limiting incorporation of sulfur and tin sulfide from the gas phase•Investigation of reaction pathway from Cu-Zn precursor to Cu2ZnSnS4 absorber layer•Presence of ZnS at back interface limits the device performance•Discussing of benefits of increased kinetics for device performance</description><subject>Annealing</subject><subject>Copper</subject><subject>Copper zinc tin sulfide</subject><subject>Devices</subject><subject>Electrodeposition</subject><subject>Equilibrium reaction</subject><subject>Formations</subject><subject>Kesterite</subject><subject>Reactive annealing</subject><subject>Semiconductors</subject><subject>Solar cells</subject><subject>Sulfur</subject><subject>Thin films</subject><subject>Tin sulfide</subject><subject>Zinc sulfides</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG89emmdSWrSohdZXBUWPKxevIQ0nUCWfqxJV_Dfm7KePQ0Mzzu88zB2jVAgoLzdFVN0BQcsC8QCkJ-wBVaqzrkSeMoWACXkEmo4Zxcx7gASwsWCPWx9v--889Rmbgy9mfw4ZPswWopx3mSrA_8ctsO2zBsTExXHzoTMUtfFS3bmTBfp6m8u2cf66X31km_enl9Xj5vcCqmm3HJohJJtQ9g6kuAqKSDVMkpVisuawFghbGlrd0eOo-KttZLLFiU0tlFiyW6Od1OvrwPFSfc-zg3MQOMhapQS0mtCVAnFI2rDGGMgp_fB9yb8aAQ9m9I7nUzp2ZRG1ElDytwfM5R--PYUdLSeBkutD2Qn3Y7-n_QvwjlwNQ</recordid><startdate>20141231</startdate><enddate>20141231</enddate><creator>Berg, Dominik M.</creator><creator>Crossay, Alexandre</creator><creator>Guillot, Jérôme</creator><creator>Izquierdo-Roca, Victor</creator><creator>Pérez-Rodriguez, Alejandro</creator><creator>Ahmed, Shafaat</creator><creator>Deligianni, Hariklia</creator><creator>Siebentritt, Susanne</creator><creator>Dale, Phillip J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141231</creationdate><title>Simplified formation process for Cu2ZnSnS4-based solar cells</title><author>Berg, Dominik M. ; Crossay, Alexandre ; Guillot, Jérôme ; Izquierdo-Roca, Victor ; Pérez-Rodriguez, Alejandro ; Ahmed, Shafaat ; Deligianni, Hariklia ; Siebentritt, Susanne ; Dale, Phillip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-c20b376dbe1dfe60f8630731a7787269e0ac33c4c9f5ef2172dcc626d160bcb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Copper</topic><topic>Copper zinc tin sulfide</topic><topic>Devices</topic><topic>Electrodeposition</topic><topic>Equilibrium reaction</topic><topic>Formations</topic><topic>Kesterite</topic><topic>Reactive annealing</topic><topic>Semiconductors</topic><topic>Solar cells</topic><topic>Sulfur</topic><topic>Thin films</topic><topic>Tin sulfide</topic><topic>Zinc sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg, Dominik M.</creatorcontrib><creatorcontrib>Crossay, Alexandre</creatorcontrib><creatorcontrib>Guillot, Jérôme</creatorcontrib><creatorcontrib>Izquierdo-Roca, Victor</creatorcontrib><creatorcontrib>Pérez-Rodriguez, Alejandro</creatorcontrib><creatorcontrib>Ahmed, Shafaat</creatorcontrib><creatorcontrib>Deligianni, Hariklia</creatorcontrib><creatorcontrib>Siebentritt, Susanne</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berg, Dominik M.</au><au>Crossay, Alexandre</au><au>Guillot, Jérôme</au><au>Izquierdo-Roca, Victor</au><au>Pérez-Rodriguez, Alejandro</au><au>Ahmed, Shafaat</au><au>Deligianni, Hariklia</au><au>Siebentritt, Susanne</au><au>Dale, Phillip J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified formation process for Cu2ZnSnS4-based solar cells</atitle><jtitle>Thin solid films</jtitle><date>2014-12-31</date><risdate>2014</risdate><volume>573</volume><spage>148</spage><epage>158</epage><pages>148-158</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><abstract>Cu2ZnSn(S,Se)4 absorber layers for thin film solar cells contain up to five separate elements making it challenging to synthesize due to the necessity of achieving chemical uniformity on a nanometer scale. In a two-step synthesis procedure a metallic Cu-Sn-Zn precursor can be converted uniformly to the semiconductor by the reaction with gaseous chalcogens. Here, it is demonstrated that only a simplified precursor containing Cu and Zn is required to form the Cu2ZnSnS4-semiconductor when the annealing step is carried out in the presence of gaseous tin sulfide and sulfur. It is shown that the formation of Cu2ZnSnS4 progresses in a self-limiting manner, independently of the amount of sulfur and tin-sulfide provided. Using ex-situ investigations, the reaction pathway is resolved and a model of the reaction process is established. The model furthermore explains the formation of the undesired ZnS phase at the back interface of the absorber, limiting the device performance. The influence of various annealing conditions on the formation of ZnS and hence the device performance with efficiencies of up to 2.3 % is shown. Lowering of the background forming gas pressure to 100 Pa was revealed to be beneficial as it influences the distribution of ZnS at the back interface.
•Formation of Cu2ZnSnS4 thin films from a precursor only containing Cu and Zn•Self-limiting incorporation of sulfur and tin sulfide from the gas phase•Investigation of reaction pathway from Cu-Zn precursor to Cu2ZnSnS4 absorber layer•Presence of ZnS at back interface limits the device performance•Discussing of benefits of increased kinetics for device performance</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2014.11.012</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6090 |
ispartof | Thin solid films, 2014-12, Vol.573, p.148-158 |
issn | 0040-6090 1879-2731 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660090338 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Annealing Copper Copper zinc tin sulfide Devices Electrodeposition Equilibrium reaction Formations Kesterite Reactive annealing Semiconductors Solar cells Sulfur Thin films Tin sulfide Zinc sulfides |
title | Simplified formation process for Cu2ZnSnS4-based solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20formation%20process%20for%20Cu2ZnSnS4-based%20solar%20cells&rft.jtitle=Thin%20solid%20films&rft.au=Berg,%20Dominik%20M.&rft.date=2014-12-31&rft.volume=573&rft.spage=148&rft.epage=158&rft.pages=148-158&rft.issn=0040-6090&rft.eissn=1879-2731&rft_id=info:doi/10.1016/j.tsf.2014.11.012&rft_dat=%3Cproquest_cross%3E1660090338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660090338&rft_id=info:pmid/&rft_els_id=S0040609014010980&rfr_iscdi=true |