Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data

Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to assoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2015-01, Vol.105, p.32-44
Hauptverfasser: Daducci, Alessandro, Canales-Rodríguez, Erick J., Zhang, Hui, Dyrby, Tim B., Alexander, Daniel C., Thiran, Jean-Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue
container_start_page 32
container_title NeuroImage (Orlando, Fla.)
container_volume 105
creator Daducci, Alessandro
Canales-Rodríguez, Erick J.
Zhang, Hui
Dyrby, Tim B.
Alexander, Daniel C.
Thiran, Jean-Philippe
description Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders. •Existing microstructure imaging methods are computationally very expensive.•We show how to re-formulate this class of techniques as convenient linear systems.•We demonstrate this linearization for two specific models, i.e. ActiveAx and NODDI.•Our approach provides an acceleration factor of several orders of magnitude.•The method was tested both on numerical simulations and real data.
doi_str_mv 10.1016/j.neuroimage.2014.10.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660089154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811914008519</els_id><sourcerecordid>1635006137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-30676d137aa8fd9ccaaac2cacc341cf9d2e9f82cb6f4b149947e2dc6732f43c53</originalsourceid><addsrcrecordid>eNqNkU1vEzEQQFcIREvhLyBLXMphg793fQwRLZEaRUJw4WI59rhylF0H2xsBvx6vUkDiQk-2xm9mPPOaBhG8IJjId_vFCFOKYTD3sKCY8BpeYCqfNJcEK9Eq0dGn812wtidEXTQvct5jjBXh_fPmggouqVTdZfN1aS0cIJkCDm2CTTGXNNkyJUDrWj6M9-gUDFrF8QTf0fZYwhB-mhLiiK6Xm_Vq-xb5FAfkgvdTnsObT2vkTDEvm2feHDK8ejivmi83Hz6vPrZ329v1annXWtHz0jIsO-kI64zpvVPWGmMstcZaxon1ylFQvqd2Jz3fEa4U74A6KztGPWdWsKvm-lz3mOK3CXLRQ8h1qIMZIU5ZEykx7hUR_BEop5IqyuUjUCYwlvXfFX3zD7qPUxrrzHNBwSRTmFaqP1PzjnMCr4-pCkw_NMF6tqr3-q9VPVudX6rVmvr6ocG0G8D9SfytsQLvzwDUPZ8CJJ1tgNGCCwls0S6G_3f5BftQtxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645363902</pqid></control><display><type>article</type><title>Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Daducci, Alessandro ; Canales-Rodríguez, Erick J. ; Zhang, Hui ; Dyrby, Tim B. ; Alexander, Daniel C. ; Thiran, Jean-Philippe</creator><creatorcontrib>Daducci, Alessandro ; Canales-Rodríguez, Erick J. ; Zhang, Hui ; Dyrby, Tim B. ; Alexander, Daniel C. ; Thiran, Jean-Philippe</creatorcontrib><description>Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders. •Existing microstructure imaging methods are computationally very expensive.•We show how to re-formulate this class of techniques as convenient linear systems.•We demonstrate this linearization for two specific models, i.e. ActiveAx and NODDI.•Our approach provides an acceleration factor of several orders of magnitude.•The method was tested both on numerical simulations and real data.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2014.10.026</identifier><identifier>PMID: 25462697</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Brain - anatomy &amp; histology ; Convex analysis ; Convex optimization ; Convexity ; Density ; Diffusion ; Diffusion Magnetic Resonance Imaging ; Diffusion MRI ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging ; Mathematical models ; Methods ; Microstructure ; Microstructure imaging ; Noise ; Optimization ; Spectrum analysis</subject><ispartof>NeuroImage (Orlando, Fla.), 2015-01, Vol.105, p.32-44</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 15, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-30676d137aa8fd9ccaaac2cacc341cf9d2e9f82cb6f4b149947e2dc6732f43c53</citedby><cites>FETCH-LOGICAL-c584t-30676d137aa8fd9ccaaac2cacc341cf9d2e9f82cb6f4b149947e2dc6732f43c53</cites><orcidid>0000-0001-6421-2633 ; 0000-0002-5426-2140 ; 0000-0002-4677-6678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1645363902?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25462697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daducci, Alessandro</creatorcontrib><creatorcontrib>Canales-Rodríguez, Erick J.</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Dyrby, Tim B.</creatorcontrib><creatorcontrib>Alexander, Daniel C.</creatorcontrib><creatorcontrib>Thiran, Jean-Philippe</creatorcontrib><title>Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders. •Existing microstructure imaging methods are computationally very expensive.•We show how to re-formulate this class of techniques as convenient linear systems.•We demonstrate this linearization for two specific models, i.e. ActiveAx and NODDI.•Our approach provides an acceleration factor of several orders of magnitude.•The method was tested both on numerical simulations and real data.</description><subject>Algorithms</subject><subject>Brain - anatomy &amp; histology</subject><subject>Convex analysis</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Density</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion MRI</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Microstructure</subject><subject>Microstructure imaging</subject><subject>Noise</subject><subject>Optimization</subject><subject>Spectrum analysis</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1vEzEQQFcIREvhLyBLXMphg793fQwRLZEaRUJw4WI59rhylF0H2xsBvx6vUkDiQk-2xm9mPPOaBhG8IJjId_vFCFOKYTD3sKCY8BpeYCqfNJcEK9Eq0dGn812wtidEXTQvct5jjBXh_fPmggouqVTdZfN1aS0cIJkCDm2CTTGXNNkyJUDrWj6M9-gUDFrF8QTf0fZYwhB-mhLiiK6Xm_Vq-xb5FAfkgvdTnsObT2vkTDEvm2feHDK8ejivmi83Hz6vPrZ329v1annXWtHz0jIsO-kI64zpvVPWGmMstcZaxon1ylFQvqd2Jz3fEa4U74A6KztGPWdWsKvm-lz3mOK3CXLRQ8h1qIMZIU5ZEykx7hUR_BEop5IqyuUjUCYwlvXfFX3zD7qPUxrrzHNBwSRTmFaqP1PzjnMCr4-pCkw_NMF6tqr3-q9VPVudX6rVmvr6ocG0G8D9SfytsQLvzwDUPZ8CJJ1tgNGCCwls0S6G_3f5BftQtxQ</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Daducci, Alessandro</creator><creator>Canales-Rodríguez, Erick J.</creator><creator>Zhang, Hui</creator><creator>Dyrby, Tim B.</creator><creator>Alexander, Daniel C.</creator><creator>Thiran, Jean-Philippe</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6421-2633</orcidid><orcidid>https://orcid.org/0000-0002-5426-2140</orcidid><orcidid>https://orcid.org/0000-0002-4677-6678</orcidid></search><sort><creationdate>20150115</creationdate><title>Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data</title><author>Daducci, Alessandro ; Canales-Rodríguez, Erick J. ; Zhang, Hui ; Dyrby, Tim B. ; Alexander, Daniel C. ; Thiran, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-30676d137aa8fd9ccaaac2cacc341cf9d2e9f82cb6f4b149947e2dc6732f43c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Brain - anatomy &amp; histology</topic><topic>Convex analysis</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Density</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion MRI</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Microstructure</topic><topic>Microstructure imaging</topic><topic>Noise</topic><topic>Optimization</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daducci, Alessandro</creatorcontrib><creatorcontrib>Canales-Rodríguez, Erick J.</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Dyrby, Tim B.</creatorcontrib><creatorcontrib>Alexander, Daniel C.</creatorcontrib><creatorcontrib>Thiran, Jean-Philippe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daducci, Alessandro</au><au>Canales-Rodríguez, Erick J.</au><au>Zhang, Hui</au><au>Dyrby, Tim B.</au><au>Alexander, Daniel C.</au><au>Thiran, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2015-01-15</date><risdate>2015</risdate><volume>105</volume><spage>32</spage><epage>44</epage><pages>32-44</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders. •Existing microstructure imaging methods are computationally very expensive.•We show how to re-formulate this class of techniques as convenient linear systems.•We demonstrate this linearization for two specific models, i.e. ActiveAx and NODDI.•Our approach provides an acceleration factor of several orders of magnitude.•The method was tested both on numerical simulations and real data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25462697</pmid><doi>10.1016/j.neuroimage.2014.10.026</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6421-2633</orcidid><orcidid>https://orcid.org/0000-0002-5426-2140</orcidid><orcidid>https://orcid.org/0000-0002-4677-6678</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2015-01, Vol.105, p.32-44
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1660089154
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Algorithms
Brain - anatomy & histology
Convex analysis
Convex optimization
Convexity
Density
Diffusion
Diffusion Magnetic Resonance Imaging
Diffusion MRI
Humans
Image Processing, Computer-Assisted - methods
Imaging
Mathematical models
Methods
Microstructure
Microstructure imaging
Noise
Optimization
Spectrum analysis
title Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerated%20Microstructure%20Imaging%20via%20Convex%20Optimization%20(AMICO)%20from%20diffusion%20MRI%20data&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Daducci,%20Alessandro&rft.date=2015-01-15&rft.volume=105&rft.spage=32&rft.epage=44&rft.pages=32-44&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2014.10.026&rft_dat=%3Cproquest_cross%3E1635006137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645363902&rft_id=info:pmid/25462697&rft_els_id=S1053811914008519&rfr_iscdi=true