Analysis of numerical stability of algebraic oceanic turbulent mixing layer models
In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numeric...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2014-12, Vol.38 (24), p.5836-5857 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5857 |
---|---|
container_issue | 24 |
container_start_page | 5836 |
container_title | Applied mathematical modelling |
container_volume | 38 |
creator | Chacón Rebollo, T. Gómez Mármol, M. Rubino, S. |
description | In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numerical schemes. We also perform some numerical tests for realistic initial conditions, that also show that the mixing-layer configurations are stable under perturbations of the data, in addition to confirm the theoretical expectations of our analysis. |
doi_str_mv | 10.1016/j.apm.2014.04.050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660088937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X14002303</els_id><sourcerecordid>1654682021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-eac98e4ab6e53ae26008a387b6698d0231609e64348cbb26c7a3b4e25ca6805f3</originalsourceid><addsrcrecordid>eNqNUE1LxDAUzEHB9eMHeOvRS-tL06YtnpbFL1gQRMFbeE1flyxpuyat2H9vynoWYWB4j5mBGcauOSQcuLzdJ3jokhR4lkBADidsBQKKuILs44yde78HgDxcK_a67tHO3vhoaKN-6sgZjTbyI9bGmnFe3mh3VDs0Oho0YR94nFw9WerHqDPfpt9FFmdyUTc0ZP0lO23Rerr65Qv2_nD_tnmKty-Pz5v1Ntai4mNMqKuSMqwl5QIplQAlirKopazKBlLBJVQkM5GVuq5TqQsUdUZprlGWkLfigt0ccw9u-JzIj6ozXpO12NMwecXlEllWoviHNM9kmULKg5QfpdoN3jtq1cGZDt2sOKhlXrVXYV61zKsgIIfguTt6Qnv6MuSU14Z6TY1xpEfVDOYP9w_SD4Ty</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654682021</pqid></control><display><type>article</type><title>Analysis of numerical stability of algebraic oceanic turbulent mixing layer models</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chacón Rebollo, T. ; Gómez Mármol, M. ; Rubino, S.</creator><creatorcontrib>Chacón Rebollo, T. ; Gómez Mármol, M. ; Rubino, S.</creatorcontrib><description>In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numerical schemes. We also perform some numerical tests for realistic initial conditions, that also show that the mixing-layer configurations are stable under perturbations of the data, in addition to confirm the theoretical expectations of our analysis.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2014.04.050</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Asymptotic properties ; Eddy diffusion models ; Gradient Richardson number ; Initial conditions ; Mathematical analysis ; Mathematical models ; Oceanic turbulent mixing layers ; Perturbation methods ; Primitive Equations of the ocean ; Turbulent mixing</subject><ispartof>Applied mathematical modelling, 2014-12, Vol.38 (24), p.5836-5857</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c391t-eac98e4ab6e53ae26008a387b6698d0231609e64348cbb26c7a3b4e25ca6805f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2014.04.050$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chacón Rebollo, T.</creatorcontrib><creatorcontrib>Gómez Mármol, M.</creatorcontrib><creatorcontrib>Rubino, S.</creatorcontrib><title>Analysis of numerical stability of algebraic oceanic turbulent mixing layer models</title><title>Applied mathematical modelling</title><description>In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numerical schemes. We also perform some numerical tests for realistic initial conditions, that also show that the mixing-layer configurations are stable under perturbations of the data, in addition to confirm the theoretical expectations of our analysis.</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Eddy diffusion models</subject><subject>Gradient Richardson number</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oceanic turbulent mixing layers</subject><subject>Perturbation methods</subject><subject>Primitive Equations of the ocean</subject><subject>Turbulent mixing</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAUzEHB9eMHeOvRS-tL06YtnpbFL1gQRMFbeE1flyxpuyat2H9vynoWYWB4j5mBGcauOSQcuLzdJ3jokhR4lkBADidsBQKKuILs44yde78HgDxcK_a67tHO3vhoaKN-6sgZjTbyI9bGmnFe3mh3VDs0Oho0YR94nFw9WerHqDPfpt9FFmdyUTc0ZP0lO23Rerr65Qv2_nD_tnmKty-Pz5v1Ntai4mNMqKuSMqwl5QIplQAlirKopazKBlLBJVQkM5GVuq5TqQsUdUZprlGWkLfigt0ccw9u-JzIj6ozXpO12NMwecXlEllWoviHNM9kmULKg5QfpdoN3jtq1cGZDt2sOKhlXrVXYV61zKsgIIfguTt6Qnv6MuSU14Z6TY1xpEfVDOYP9w_SD4Ty</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Chacón Rebollo, T.</creator><creator>Gómez Mármol, M.</creator><creator>Rubino, S.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141215</creationdate><title>Analysis of numerical stability of algebraic oceanic turbulent mixing layer models</title><author>Chacón Rebollo, T. ; Gómez Mármol, M. ; Rubino, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-eac98e4ab6e53ae26008a387b6698d0231609e64348cbb26c7a3b4e25ca6805f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Eddy diffusion models</topic><topic>Gradient Richardson number</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oceanic turbulent mixing layers</topic><topic>Perturbation methods</topic><topic>Primitive Equations of the ocean</topic><topic>Turbulent mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacón Rebollo, T.</creatorcontrib><creatorcontrib>Gómez Mármol, M.</creatorcontrib><creatorcontrib>Rubino, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacón Rebollo, T.</au><au>Gómez Mármol, M.</au><au>Rubino, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of numerical stability of algebraic oceanic turbulent mixing layer models</atitle><jtitle>Applied mathematical modelling</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>38</volume><issue>24</issue><spage>5836</spage><epage>5857</epage><pages>5836-5857</pages><issn>0307-904X</issn><abstract>In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numerical schemes. We also perform some numerical tests for realistic initial conditions, that also show that the mixing-layer configurations are stable under perturbations of the data, in addition to confirm the theoretical expectations of our analysis.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2014.04.050</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied mathematical modelling, 2014-12, Vol.38 (24), p.5836-5857 |
issn | 0307-904X |
language | eng |
recordid | cdi_proquest_miscellaneous_1660088937 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Asymptotic properties Eddy diffusion models Gradient Richardson number Initial conditions Mathematical analysis Mathematical models Oceanic turbulent mixing layers Perturbation methods Primitive Equations of the ocean Turbulent mixing |
title | Analysis of numerical stability of algebraic oceanic turbulent mixing layer models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20numerical%20stability%20of%20algebraic%20oceanic%20turbulent%20mixing%20layer%20models&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Chac%C3%B3n%20Rebollo,%20T.&rft.date=2014-12-15&rft.volume=38&rft.issue=24&rft.spage=5836&rft.epage=5857&rft.pages=5836-5857&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2014.04.050&rft_dat=%3Cproquest_cross%3E1654682021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654682021&rft_id=info:pmid/&rft_els_id=S0307904X14002303&rfr_iscdi=true |