Analysis of numerical stability of algebraic oceanic turbulent mixing layer models

In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numeric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2014-12, Vol.38 (24), p.5836-5857
Hauptverfasser: Chacón Rebollo, T., Gómez Mármol, M., Rubino, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5857
container_issue 24
container_start_page 5836
container_title Applied mathematical modelling
container_volume 38
creator Chacón Rebollo, T.
Gómez Mármol, M.
Rubino, S.
description In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numerical schemes. We also perform some numerical tests for realistic initial conditions, that also show that the mixing-layer configurations are stable under perturbations of the data, in addition to confirm the theoretical expectations of our analysis.
doi_str_mv 10.1016/j.apm.2014.04.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660088937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X14002303</els_id><sourcerecordid>1654682021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-eac98e4ab6e53ae26008a387b6698d0231609e64348cbb26c7a3b4e25ca6805f3</originalsourceid><addsrcrecordid>eNqNUE1LxDAUzEHB9eMHeOvRS-tL06YtnpbFL1gQRMFbeE1flyxpuyat2H9vynoWYWB4j5mBGcauOSQcuLzdJ3jokhR4lkBADidsBQKKuILs44yde78HgDxcK_a67tHO3vhoaKN-6sgZjTbyI9bGmnFe3mh3VDs0Oho0YR94nFw9WerHqDPfpt9FFmdyUTc0ZP0lO23Rerr65Qv2_nD_tnmKty-Pz5v1Ntai4mNMqKuSMqwl5QIplQAlirKopazKBlLBJVQkM5GVuq5TqQsUdUZprlGWkLfigt0ccw9u-JzIj6ozXpO12NMwecXlEllWoviHNM9kmULKg5QfpdoN3jtq1cGZDt2sOKhlXrVXYV61zKsgIIfguTt6Qnv6MuSU14Z6TY1xpEfVDOYP9w_SD4Ty</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654682021</pqid></control><display><type>article</type><title>Analysis of numerical stability of algebraic oceanic turbulent mixing layer models</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chacón Rebollo, T. ; Gómez Mármol, M. ; Rubino, S.</creator><creatorcontrib>Chacón Rebollo, T. ; Gómez Mármol, M. ; Rubino, S.</creatorcontrib><description>In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numerical schemes. We also perform some numerical tests for realistic initial conditions, that also show that the mixing-layer configurations are stable under perturbations of the data, in addition to confirm the theoretical expectations of our analysis.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2014.04.050</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Asymptotic properties ; Eddy diffusion models ; Gradient Richardson number ; Initial conditions ; Mathematical analysis ; Mathematical models ; Oceanic turbulent mixing layers ; Perturbation methods ; Primitive Equations of the ocean ; Turbulent mixing</subject><ispartof>Applied mathematical modelling, 2014-12, Vol.38 (24), p.5836-5857</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c391t-eac98e4ab6e53ae26008a387b6698d0231609e64348cbb26c7a3b4e25ca6805f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2014.04.050$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chacón Rebollo, T.</creatorcontrib><creatorcontrib>Gómez Mármol, M.</creatorcontrib><creatorcontrib>Rubino, S.</creatorcontrib><title>Analysis of numerical stability of algebraic oceanic turbulent mixing layer models</title><title>Applied mathematical modelling</title><description>In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numerical schemes. We also perform some numerical tests for realistic initial conditions, that also show that the mixing-layer configurations are stable under perturbations of the data, in addition to confirm the theoretical expectations of our analysis.</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Eddy diffusion models</subject><subject>Gradient Richardson number</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Oceanic turbulent mixing layers</subject><subject>Perturbation methods</subject><subject>Primitive Equations of the ocean</subject><subject>Turbulent mixing</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAUzEHB9eMHeOvRS-tL06YtnpbFL1gQRMFbeE1flyxpuyat2H9vynoWYWB4j5mBGcauOSQcuLzdJ3jokhR4lkBADidsBQKKuILs44yde78HgDxcK_a67tHO3vhoaKN-6sgZjTbyI9bGmnFe3mh3VDs0Oho0YR94nFw9WerHqDPfpt9FFmdyUTc0ZP0lO23Rerr65Qv2_nD_tnmKty-Pz5v1Ntai4mNMqKuSMqwl5QIplQAlirKopazKBlLBJVQkM5GVuq5TqQsUdUZprlGWkLfigt0ccw9u-JzIj6ozXpO12NMwecXlEllWoviHNM9kmULKg5QfpdoN3jtq1cGZDt2sOKhlXrVXYV61zKsgIIfguTt6Qnv6MuSU14Z6TY1xpEfVDOYP9w_SD4Ty</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Chacón Rebollo, T.</creator><creator>Gómez Mármol, M.</creator><creator>Rubino, S.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141215</creationdate><title>Analysis of numerical stability of algebraic oceanic turbulent mixing layer models</title><author>Chacón Rebollo, T. ; Gómez Mármol, M. ; Rubino, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-eac98e4ab6e53ae26008a387b6698d0231609e64348cbb26c7a3b4e25ca6805f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Eddy diffusion models</topic><topic>Gradient Richardson number</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Oceanic turbulent mixing layers</topic><topic>Perturbation methods</topic><topic>Primitive Equations of the ocean</topic><topic>Turbulent mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chacón Rebollo, T.</creatorcontrib><creatorcontrib>Gómez Mármol, M.</creatorcontrib><creatorcontrib>Rubino, S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chacón Rebollo, T.</au><au>Gómez Mármol, M.</au><au>Rubino, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of numerical stability of algebraic oceanic turbulent mixing layer models</atitle><jtitle>Applied mathematical modelling</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>38</volume><issue>24</issue><spage>5836</spage><epage>5857</epage><pages>5836-5857</pages><issn>0307-904X</issn><abstract>In this paper, we study the stability of oceanic turbulent mixing layers by the finite element method with respect to perturbations of the data. We prove that the equilibria states depend continuously on the data, and that they are asymptotically stable in time, when approximated by standard numerical schemes. We also perform some numerical tests for realistic initial conditions, that also show that the mixing-layer configurations are stable under perturbations of the data, in addition to confirm the theoretical expectations of our analysis.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2014.04.050</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2014-12, Vol.38 (24), p.5836-5857
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_1660088937
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Approximation
Asymptotic properties
Eddy diffusion models
Gradient Richardson number
Initial conditions
Mathematical analysis
Mathematical models
Oceanic turbulent mixing layers
Perturbation methods
Primitive Equations of the ocean
Turbulent mixing
title Analysis of numerical stability of algebraic oceanic turbulent mixing layer models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20numerical%20stability%20of%20algebraic%20oceanic%20turbulent%20mixing%20layer%20models&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Chac%C3%B3n%20Rebollo,%20T.&rft.date=2014-12-15&rft.volume=38&rft.issue=24&rft.spage=5836&rft.epage=5857&rft.pages=5836-5857&rft.issn=0307-904X&rft_id=info:doi/10.1016/j.apm.2014.04.050&rft_dat=%3Cproquest_cross%3E1654682021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654682021&rft_id=info:pmid/&rft_els_id=S0307904X14002303&rfr_iscdi=true