Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide

The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2013-07, Vol.1 (7), p.412-418
Hauptverfasser: Ishihara, Hidetaka, Kannarpady, Ganesh K., Woo, Justin, Biris, Alexandru S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 7
container_start_page 412
container_title Energy technology (Weinheim, Germany)
container_volume 1
creator Ishihara, Hidetaka
Kannarpady, Ganesh K.
Woo, Justin
Biris, Alexandru S.
description The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes were unchanged as a result of coating, but the titanium disilicide acted as an enhanced charge‐transfer barrier, which reduced the electron–hole recombination on the surface of the titania nanotubes. A considerable increase in the photocurrent density was observed for the coated titania nanotubes resulting from the enhanced charge‐transfer process. As both the electrochemical anodization and RF magnetron sputtering technique are highly scalable, the composite device could be useful in designing cheaper photoanodes for energy applications, as well as environmental applications such as water purification. You gotta keep ′em separated: The efficiency of hydrogen generation by photo‐electrochemical water splitting using titanium dioxide nanotubes was significantly improved by coating the nanotubes with a thin layer of titanium disilicide to enhance the electron–hole charge separation. The implications of these findings could lead to a cleaner, greener way to generate energy.
doi_str_mv 10.1002/ente.201300030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660084574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545351021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3050-55c1f11e2446f8b54dabb6cf46db7dfb2b31f4189cca359e2b3f63c1ae564cc23</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4soOOaungNevGwmTdK1R9mqE8YUmeeQpi8ss0tq0iq7-RH8jH4SOzYmePH03oPf78_jH0WXBI8IxvEN2AZGMSYUY0zxSdSLScaGLM6S0-OepufRIIR1hxDMKce0F73mdiWtghI9rVzjVOt9F4WeIdTOBkBOo6VppDXy-_NrIa1r2gLQDBrwbt1a1Rhn0RTejYKAJrKuu6QP06wOVrtBUxNMZZQp4SI607IKMDjMfvRyly8ns-H88f5hcjsfKoo5HnKuiCYEYsYSnRaclbIoEqVZUhbjUhdxQYlmJM2UkpRn0N06oYpI4AlTKqb96HqfW3v31kJoxMYEBVUlLbg2CJIkGKeMj1mHXv1B1671tvuuoxjJspTQXeBoTynvQvCgRe3NRvqtIFjs6he7-sWx_k7I9sKHqWD7Dy3yxTL_dX8AjRSLeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641998132</pqid></control><display><type>article</type><title>Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ishihara, Hidetaka ; Kannarpady, Ganesh K. ; Woo, Justin ; Biris, Alexandru S.</creator><creatorcontrib>Ishihara, Hidetaka ; Kannarpady, Ganesh K. ; Woo, Justin ; Biris, Alexandru S.</creatorcontrib><description>The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes were unchanged as a result of coating, but the titanium disilicide acted as an enhanced charge‐transfer barrier, which reduced the electron–hole recombination on the surface of the titania nanotubes. A considerable increase in the photocurrent density was observed for the coated titania nanotubes resulting from the enhanced charge‐transfer process. As both the electrochemical anodization and RF magnetron sputtering technique are highly scalable, the composite device could be useful in designing cheaper photoanodes for energy applications, as well as environmental applications such as water purification. You gotta keep ′em separated: The efficiency of hydrogen generation by photo‐electrochemical water splitting using titanium dioxide nanotubes was significantly improved by coating the nanotubes with a thin layer of titanium disilicide to enhance the electron–hole charge separation. The implications of these findings could lead to a cleaner, greener way to generate energy.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201300030</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>band‐gap engineering ; Coating ; Electrochemistry ; Heterojunction devices ; Holes (electron deficiencies) ; hydrogen generation ; Magnetic properties ; Magnetron sputtering ; nanomaterials ; Nanotechnology ; Nanotubes ; Optical properties ; Photoanodes ; photochemistry ; Photocurrent ; Photoelectric effect ; Photoelectric emission ; Radio frequencies ; Radio frequency ; Solar energy ; Titanium ; Titanium dioxide ; Water purification ; water splitting</subject><ispartof>Energy technology (Weinheim, Germany), 2013-07, Vol.1 (7), p.412-418</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3050-55c1f11e2446f8b54dabb6cf46db7dfb2b31f4189cca359e2b3f63c1ae564cc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201300030$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201300030$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ishihara, Hidetaka</creatorcontrib><creatorcontrib>Kannarpady, Ganesh K.</creatorcontrib><creatorcontrib>Woo, Justin</creatorcontrib><creatorcontrib>Biris, Alexandru S.</creatorcontrib><title>Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide</title><title>Energy technology (Weinheim, Germany)</title><description>The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes were unchanged as a result of coating, but the titanium disilicide acted as an enhanced charge‐transfer barrier, which reduced the electron–hole recombination on the surface of the titania nanotubes. A considerable increase in the photocurrent density was observed for the coated titania nanotubes resulting from the enhanced charge‐transfer process. As both the electrochemical anodization and RF magnetron sputtering technique are highly scalable, the composite device could be useful in designing cheaper photoanodes for energy applications, as well as environmental applications such as water purification. You gotta keep ′em separated: The efficiency of hydrogen generation by photo‐electrochemical water splitting using titanium dioxide nanotubes was significantly improved by coating the nanotubes with a thin layer of titanium disilicide to enhance the electron–hole charge separation. The implications of these findings could lead to a cleaner, greener way to generate energy.</description><subject>band‐gap engineering</subject><subject>Coating</subject><subject>Electrochemistry</subject><subject>Heterojunction devices</subject><subject>Holes (electron deficiencies)</subject><subject>hydrogen generation</subject><subject>Magnetic properties</subject><subject>Magnetron sputtering</subject><subject>nanomaterials</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Optical properties</subject><subject>Photoanodes</subject><subject>photochemistry</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Radio frequencies</subject><subject>Radio frequency</subject><subject>Solar energy</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Water purification</subject><subject>water splitting</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4soOOaungNevGwmTdK1R9mqE8YUmeeQpi8ss0tq0iq7-RH8jH4SOzYmePH03oPf78_jH0WXBI8IxvEN2AZGMSYUY0zxSdSLScaGLM6S0-OepufRIIR1hxDMKce0F73mdiWtghI9rVzjVOt9F4WeIdTOBkBOo6VppDXy-_NrIa1r2gLQDBrwbt1a1Rhn0RTejYKAJrKuu6QP06wOVrtBUxNMZZQp4SI607IKMDjMfvRyly8ns-H88f5hcjsfKoo5HnKuiCYEYsYSnRaclbIoEqVZUhbjUhdxQYlmJM2UkpRn0N06oYpI4AlTKqb96HqfW3v31kJoxMYEBVUlLbg2CJIkGKeMj1mHXv1B1671tvuuoxjJspTQXeBoTynvQvCgRe3NRvqtIFjs6he7-sWx_k7I9sKHqWD7Dy3yxTL_dX8AjRSLeg</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Ishihara, Hidetaka</creator><creator>Kannarpady, Ganesh K.</creator><creator>Woo, Justin</creator><creator>Biris, Alexandru S.</creator><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7QQ</scope><scope>7SU</scope><scope>7U5</scope><scope>C1K</scope><scope>JG9</scope></search><sort><creationdate>201307</creationdate><title>Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide</title><author>Ishihara, Hidetaka ; Kannarpady, Ganesh K. ; Woo, Justin ; Biris, Alexandru S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3050-55c1f11e2446f8b54dabb6cf46db7dfb2b31f4189cca359e2b3f63c1ae564cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>band‐gap engineering</topic><topic>Coating</topic><topic>Electrochemistry</topic><topic>Heterojunction devices</topic><topic>Holes (electron deficiencies)</topic><topic>hydrogen generation</topic><topic>Magnetic properties</topic><topic>Magnetron sputtering</topic><topic>nanomaterials</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Optical properties</topic><topic>Photoanodes</topic><topic>photochemistry</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Radio frequencies</topic><topic>Radio frequency</topic><topic>Solar energy</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Water purification</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishihara, Hidetaka</creatorcontrib><creatorcontrib>Kannarpady, Ganesh K.</creatorcontrib><creatorcontrib>Woo, Justin</creatorcontrib><creatorcontrib>Biris, Alexandru S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishihara, Hidetaka</au><au>Kannarpady, Ganesh K.</au><au>Woo, Justin</au><au>Biris, Alexandru S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2013-07</date><risdate>2013</risdate><volume>1</volume><issue>7</issue><spage>412</spage><epage>418</epage><pages>412-418</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes were unchanged as a result of coating, but the titanium disilicide acted as an enhanced charge‐transfer barrier, which reduced the electron–hole recombination on the surface of the titania nanotubes. A considerable increase in the photocurrent density was observed for the coated titania nanotubes resulting from the enhanced charge‐transfer process. As both the electrochemical anodization and RF magnetron sputtering technique are highly scalable, the composite device could be useful in designing cheaper photoanodes for energy applications, as well as environmental applications such as water purification. You gotta keep ′em separated: The efficiency of hydrogen generation by photo‐electrochemical water splitting using titanium dioxide nanotubes was significantly improved by coating the nanotubes with a thin layer of titanium disilicide to enhance the electron–hole charge separation. The implications of these findings could lead to a cleaner, greener way to generate energy.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/ente.201300030</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2013-07, Vol.1 (7), p.412-418
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_miscellaneous_1660084574
source Wiley Online Library Journals Frontfile Complete
subjects band‐gap engineering
Coating
Electrochemistry
Heterojunction devices
Holes (electron deficiencies)
hydrogen generation
Magnetic properties
Magnetron sputtering
nanomaterials
Nanotechnology
Nanotubes
Optical properties
Photoanodes
photochemistry
Photocurrent
Photoelectric effect
Photoelectric emission
Radio frequencies
Radio frequency
Solar energy
Titanium
Titanium dioxide
Water purification
water splitting
title Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Photocurrent%20Response%20of%20Titania%E2%80%90Nanotube%20Heterojunction%20Devices%20Capped%20with%20Titanium%20Disilicide&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Ishihara,%20Hidetaka&rft.date=2013-07&rft.volume=1&rft.issue=7&rft.spage=412&rft.epage=418&rft.pages=412-418&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201300030&rft_dat=%3Cproquest_cross%3E3545351021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641998132&rft_id=info:pmid/&rfr_iscdi=true