Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide
The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes we...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2013-07, Vol.1 (7), p.412-418 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 7 |
container_start_page | 412 |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 1 |
creator | Ishihara, Hidetaka Kannarpady, Ganesh K. Woo, Justin Biris, Alexandru S. |
description | The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes were unchanged as a result of coating, but the titanium disilicide acted as an enhanced charge‐transfer barrier, which reduced the electron–hole recombination on the surface of the titania nanotubes. A considerable increase in the photocurrent density was observed for the coated titania nanotubes resulting from the enhanced charge‐transfer process. As both the electrochemical anodization and RF magnetron sputtering technique are highly scalable, the composite device could be useful in designing cheaper photoanodes for energy applications, as well as environmental applications such as water purification.
You gotta keep ′em separated: The efficiency of hydrogen generation by photo‐electrochemical water splitting using titanium dioxide nanotubes was significantly improved by coating the nanotubes with a thin layer of titanium disilicide to enhance the electron–hole charge separation. The implications of these findings could lead to a cleaner, greener way to generate energy. |
doi_str_mv | 10.1002/ente.201300030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660084574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545351021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3050-55c1f11e2446f8b54dabb6cf46db7dfb2b31f4189cca359e2b3f63c1ae564cc23</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4soOOaungNevGwmTdK1R9mqE8YUmeeQpi8ss0tq0iq7-RH8jH4SOzYmePH03oPf78_jH0WXBI8IxvEN2AZGMSYUY0zxSdSLScaGLM6S0-OepufRIIR1hxDMKce0F73mdiWtghI9rVzjVOt9F4WeIdTOBkBOo6VppDXy-_NrIa1r2gLQDBrwbt1a1Rhn0RTejYKAJrKuu6QP06wOVrtBUxNMZZQp4SI607IKMDjMfvRyly8ns-H88f5hcjsfKoo5HnKuiCYEYsYSnRaclbIoEqVZUhbjUhdxQYlmJM2UkpRn0N06oYpI4AlTKqb96HqfW3v31kJoxMYEBVUlLbg2CJIkGKeMj1mHXv1B1671tvuuoxjJspTQXeBoTynvQvCgRe3NRvqtIFjs6he7-sWx_k7I9sKHqWD7Dy3yxTL_dX8AjRSLeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1641998132</pqid></control><display><type>article</type><title>Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ishihara, Hidetaka ; Kannarpady, Ganesh K. ; Woo, Justin ; Biris, Alexandru S.</creator><creatorcontrib>Ishihara, Hidetaka ; Kannarpady, Ganesh K. ; Woo, Justin ; Biris, Alexandru S.</creatorcontrib><description>The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes were unchanged as a result of coating, but the titanium disilicide acted as an enhanced charge‐transfer barrier, which reduced the electron–hole recombination on the surface of the titania nanotubes. A considerable increase in the photocurrent density was observed for the coated titania nanotubes resulting from the enhanced charge‐transfer process. As both the electrochemical anodization and RF magnetron sputtering technique are highly scalable, the composite device could be useful in designing cheaper photoanodes for energy applications, as well as environmental applications such as water purification.
You gotta keep ′em separated: The efficiency of hydrogen generation by photo‐electrochemical water splitting using titanium dioxide nanotubes was significantly improved by coating the nanotubes with a thin layer of titanium disilicide to enhance the electron–hole charge separation. The implications of these findings could lead to a cleaner, greener way to generate energy.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201300030</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag</publisher><subject>band‐gap engineering ; Coating ; Electrochemistry ; Heterojunction devices ; Holes (electron deficiencies) ; hydrogen generation ; Magnetic properties ; Magnetron sputtering ; nanomaterials ; Nanotechnology ; Nanotubes ; Optical properties ; Photoanodes ; photochemistry ; Photocurrent ; Photoelectric effect ; Photoelectric emission ; Radio frequencies ; Radio frequency ; Solar energy ; Titanium ; Titanium dioxide ; Water purification ; water splitting</subject><ispartof>Energy technology (Weinheim, Germany), 2013-07, Vol.1 (7), p.412-418</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3050-55c1f11e2446f8b54dabb6cf46db7dfb2b31f4189cca359e2b3f63c1ae564cc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201300030$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201300030$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ishihara, Hidetaka</creatorcontrib><creatorcontrib>Kannarpady, Ganesh K.</creatorcontrib><creatorcontrib>Woo, Justin</creatorcontrib><creatorcontrib>Biris, Alexandru S.</creatorcontrib><title>Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide</title><title>Energy technology (Weinheim, Germany)</title><description>The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes were unchanged as a result of coating, but the titanium disilicide acted as an enhanced charge‐transfer barrier, which reduced the electron–hole recombination on the surface of the titania nanotubes. A considerable increase in the photocurrent density was observed for the coated titania nanotubes resulting from the enhanced charge‐transfer process. As both the electrochemical anodization and RF magnetron sputtering technique are highly scalable, the composite device could be useful in designing cheaper photoanodes for energy applications, as well as environmental applications such as water purification.
You gotta keep ′em separated: The efficiency of hydrogen generation by photo‐electrochemical water splitting using titanium dioxide nanotubes was significantly improved by coating the nanotubes with a thin layer of titanium disilicide to enhance the electron–hole charge separation. The implications of these findings could lead to a cleaner, greener way to generate energy.</description><subject>band‐gap engineering</subject><subject>Coating</subject><subject>Electrochemistry</subject><subject>Heterojunction devices</subject><subject>Holes (electron deficiencies)</subject><subject>hydrogen generation</subject><subject>Magnetic properties</subject><subject>Magnetron sputtering</subject><subject>nanomaterials</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Optical properties</subject><subject>Photoanodes</subject><subject>photochemistry</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Radio frequencies</subject><subject>Radio frequency</subject><subject>Solar energy</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Water purification</subject><subject>water splitting</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4soOOaungNevGwmTdK1R9mqE8YUmeeQpi8ss0tq0iq7-RH8jH4SOzYmePH03oPf78_jH0WXBI8IxvEN2AZGMSYUY0zxSdSLScaGLM6S0-OepufRIIR1hxDMKce0F73mdiWtghI9rVzjVOt9F4WeIdTOBkBOo6VppDXy-_NrIa1r2gLQDBrwbt1a1Rhn0RTejYKAJrKuu6QP06wOVrtBUxNMZZQp4SI607IKMDjMfvRyly8ns-H88f5hcjsfKoo5HnKuiCYEYsYSnRaclbIoEqVZUhbjUhdxQYlmJM2UkpRn0N06oYpI4AlTKqb96HqfW3v31kJoxMYEBVUlLbg2CJIkGKeMj1mHXv1B1671tvuuoxjJspTQXeBoTynvQvCgRe3NRvqtIFjs6he7-sWx_k7I9sKHqWD7Dy3yxTL_dX8AjRSLeg</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Ishihara, Hidetaka</creator><creator>Kannarpady, Ganesh K.</creator><creator>Woo, Justin</creator><creator>Biris, Alexandru S.</creator><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7QQ</scope><scope>7SU</scope><scope>7U5</scope><scope>C1K</scope><scope>JG9</scope></search><sort><creationdate>201307</creationdate><title>Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide</title><author>Ishihara, Hidetaka ; Kannarpady, Ganesh K. ; Woo, Justin ; Biris, Alexandru S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3050-55c1f11e2446f8b54dabb6cf46db7dfb2b31f4189cca359e2b3f63c1ae564cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>band‐gap engineering</topic><topic>Coating</topic><topic>Electrochemistry</topic><topic>Heterojunction devices</topic><topic>Holes (electron deficiencies)</topic><topic>hydrogen generation</topic><topic>Magnetic properties</topic><topic>Magnetron sputtering</topic><topic>nanomaterials</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Optical properties</topic><topic>Photoanodes</topic><topic>photochemistry</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Radio frequencies</topic><topic>Radio frequency</topic><topic>Solar energy</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Water purification</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishihara, Hidetaka</creatorcontrib><creatorcontrib>Kannarpady, Ganesh K.</creatorcontrib><creatorcontrib>Woo, Justin</creatorcontrib><creatorcontrib>Biris, Alexandru S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishihara, Hidetaka</au><au>Kannarpady, Ganesh K.</au><au>Woo, Justin</au><au>Biris, Alexandru S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2013-07</date><risdate>2013</risdate><volume>1</volume><issue>7</issue><spage>412</spage><epage>418</epage><pages>412-418</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>The coating of titania nanotubes to enhance their photocurrent response is presented. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using the radio frequency (RF) magnetron sputtering technique. The optical properties of titania nanotubes were unchanged as a result of coating, but the titanium disilicide acted as an enhanced charge‐transfer barrier, which reduced the electron–hole recombination on the surface of the titania nanotubes. A considerable increase in the photocurrent density was observed for the coated titania nanotubes resulting from the enhanced charge‐transfer process. As both the electrochemical anodization and RF magnetron sputtering technique are highly scalable, the composite device could be useful in designing cheaper photoanodes for energy applications, as well as environmental applications such as water purification.
You gotta keep ′em separated: The efficiency of hydrogen generation by photo‐electrochemical water splitting using titanium dioxide nanotubes was significantly improved by coating the nanotubes with a thin layer of titanium disilicide to enhance the electron–hole charge separation. The implications of these findings could lead to a cleaner, greener way to generate energy.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag</pub><doi>10.1002/ente.201300030</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2013-07, Vol.1 (7), p.412-418 |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660084574 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | band‐gap engineering Coating Electrochemistry Heterojunction devices Holes (electron deficiencies) hydrogen generation Magnetic properties Magnetron sputtering nanomaterials Nanotechnology Nanotubes Optical properties Photoanodes photochemistry Photocurrent Photoelectric effect Photoelectric emission Radio frequencies Radio frequency Solar energy Titanium Titanium dioxide Water purification water splitting |
title | Enhanced Photocurrent Response of Titania‐Nanotube Heterojunction Devices Capped with Titanium Disilicide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A26%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Photocurrent%20Response%20of%20Titania%E2%80%90Nanotube%20Heterojunction%20Devices%20Capped%20with%20Titanium%20Disilicide&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Ishihara,%20Hidetaka&rft.date=2013-07&rft.volume=1&rft.issue=7&rft.spage=412&rft.epage=418&rft.pages=412-418&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201300030&rft_dat=%3Cproquest_cross%3E3545351021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1641998132&rft_id=info:pmid/&rfr_iscdi=true |