Polaron activation energy of nano porphyrin nickel(II) thin films

5,10,15,20-Tetraphenyl-21 H , 23 H -porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160–460 n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2015-01, Vol.118 (1), p.345-351
Hauptverfasser: Dongol, M., El-Denglawey, A., Elhady, A. F., Abuelwafa, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 1
container_start_page 345
container_title Applied physics. A, Materials science & processing
container_volume 118
creator Dongol, M.
El-Denglawey, A.
Elhady, A. F.
Abuelwafa, A. A.
description 5,10,15,20-Tetraphenyl-21 H , 23 H -porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160–460 nm) and isochronal annealing in temperature range (300–348 K) on DC electrical properties were studied. Both bulk resistivity and the mean free path were determined; their values are 1.38 × 10 5  Ω cm and 0.433 nm, respectively. The electrical conductivity exhibits intrinsic and extrinsic conduction. The values of activation energy in extrinsic and intrinsic regions are 0.204 and 1.12 eV, respectively. Mott’s parameters were determined at low temperature. Seebeck coefficient indicates p -type conduction of NiTPP films. Carrier density, mobility and holes concentration were determined. Seebeck coefficient decreases with the increasing of temperature, while the conductivity increases with the increasing of temperature. The difference between the conductivity and the thermoelectric power activation energies was attributed to the potential barrier grain boundaries.
doi_str_mv 10.1007/s00339-014-8737-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660083324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660083324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-3875c3ba98b4a4457b87ec3ae84aa8c5e04781293b51f51c6302949a992429593</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNse6yE6-dhNcizFj0JBD3oO2ZBtU7fJmmyF_nsj69k5zAe87zDzIHRL4J4AiIcMwJjCQDiWggkMZ2hGOKMYGgbnaAaKCyyZai7RVc57KMEpnaHlW-xNiqEydvTfZvSldcGl7amKXRVMiNUQ07A7JR-q4O2n6xfr9V017src-f6Qr9FFZ_rsbv7qHH08Pb6vXvDm9Xm9Wm6wZVKMuKTastYo2XLDeS1aKZxlxklujLS1Ay4koYq1NelqYsvZVHFllKKcqlqxOVpMe4cUv44uj_rgs3V9b4KLx6xJ0wBIxigvUjJJbYo5J9fpIfmDSSdNQP_i0hMuXXDpX1waiodOnly0YeuS3sdjCuWjf0w_oixrbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660083324</pqid></control><display><type>article</type><title>Polaron activation energy of nano porphyrin nickel(II) thin films</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dongol, M. ; El-Denglawey, A. ; Elhady, A. F. ; Abuelwafa, A. A.</creator><creatorcontrib>Dongol, M. ; El-Denglawey, A. ; Elhady, A. F. ; Abuelwafa, A. A.</creatorcontrib><description>5,10,15,20-Tetraphenyl-21 H , 23 H -porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160–460 nm) and isochronal annealing in temperature range (300–348 K) on DC electrical properties were studied. Both bulk resistivity and the mean free path were determined; their values are 1.38 × 10 5  Ω cm and 0.433 nm, respectively. The electrical conductivity exhibits intrinsic and extrinsic conduction. The values of activation energy in extrinsic and intrinsic regions are 0.204 and 1.12 eV, respectively. Mott’s parameters were determined at low temperature. Seebeck coefficient indicates p -type conduction of NiTPP films. Carrier density, mobility and holes concentration were determined. Seebeck coefficient decreases with the increasing of temperature, while the conductivity increases with the increasing of temperature. The difference between the conductivity and the thermoelectric power activation energies was attributed to the potential barrier grain boundaries.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-014-8737-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation energy ; Annealing ; Carrier density ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Electric power generation ; Grain boundaries ; Machines ; Manufacturing ; Materials science ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thermoelectricity ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2015-01, Vol.118 (1), p.345-351</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-3875c3ba98b4a4457b87ec3ae84aa8c5e04781293b51f51c6302949a992429593</citedby><cites>FETCH-LOGICAL-c387t-3875c3ba98b4a4457b87ec3ae84aa8c5e04781293b51f51c6302949a992429593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-014-8737-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-014-8737-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Dongol, M.</creatorcontrib><creatorcontrib>El-Denglawey, A.</creatorcontrib><creatorcontrib>Elhady, A. F.</creatorcontrib><creatorcontrib>Abuelwafa, A. A.</creatorcontrib><title>Polaron activation energy of nano porphyrin nickel(II) thin films</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>5,10,15,20-Tetraphenyl-21 H , 23 H -porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160–460 nm) and isochronal annealing in temperature range (300–348 K) on DC electrical properties were studied. Both bulk resistivity and the mean free path were determined; their values are 1.38 × 10 5  Ω cm and 0.433 nm, respectively. The electrical conductivity exhibits intrinsic and extrinsic conduction. The values of activation energy in extrinsic and intrinsic regions are 0.204 and 1.12 eV, respectively. Mott’s parameters were determined at low temperature. Seebeck coefficient indicates p -type conduction of NiTPP films. Carrier density, mobility and holes concentration were determined. Seebeck coefficient decreases with the increasing of temperature, while the conductivity increases with the increasing of temperature. The difference between the conductivity and the thermoelectric power activation energies was attributed to the potential barrier grain boundaries.</description><subject>Activation energy</subject><subject>Annealing</subject><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Electric power generation</subject><subject>Grain boundaries</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNse6yE6-dhNcizFj0JBD3oO2ZBtU7fJmmyF_nsj69k5zAe87zDzIHRL4J4AiIcMwJjCQDiWggkMZ2hGOKMYGgbnaAaKCyyZai7RVc57KMEpnaHlW-xNiqEydvTfZvSldcGl7amKXRVMiNUQ07A7JR-q4O2n6xfr9V017src-f6Qr9FFZ_rsbv7qHH08Pb6vXvDm9Xm9Wm6wZVKMuKTastYo2XLDeS1aKZxlxklujLS1Ay4koYq1NelqYsvZVHFllKKcqlqxOVpMe4cUv44uj_rgs3V9b4KLx6xJ0wBIxigvUjJJbYo5J9fpIfmDSSdNQP_i0hMuXXDpX1waiodOnly0YeuS3sdjCuWjf0w_oixrbQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Dongol, M.</creator><creator>El-Denglawey, A.</creator><creator>Elhady, A. F.</creator><creator>Abuelwafa, A. A.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Polaron activation energy of nano porphyrin nickel(II) thin films</title><author>Dongol, M. ; El-Denglawey, A. ; Elhady, A. F. ; Abuelwafa, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-3875c3ba98b4a4457b87ec3ae84aa8c5e04781293b51f51c6302949a992429593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activation energy</topic><topic>Annealing</topic><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Electric power generation</topic><topic>Grain boundaries</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongol, M.</creatorcontrib><creatorcontrib>El-Denglawey, A.</creatorcontrib><creatorcontrib>Elhady, A. F.</creatorcontrib><creatorcontrib>Abuelwafa, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongol, M.</au><au>El-Denglawey, A.</au><au>Elhady, A. F.</au><au>Abuelwafa, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polaron activation energy of nano porphyrin nickel(II) thin films</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2015-01-01</date><risdate>2015</risdate><volume>118</volume><issue>1</issue><spage>345</spage><epage>351</epage><pages>345-351</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>5,10,15,20-Tetraphenyl-21 H , 23 H -porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160–460 nm) and isochronal annealing in temperature range (300–348 K) on DC electrical properties were studied. Both bulk resistivity and the mean free path were determined; their values are 1.38 × 10 5  Ω cm and 0.433 nm, respectively. The electrical conductivity exhibits intrinsic and extrinsic conduction. The values of activation energy in extrinsic and intrinsic regions are 0.204 and 1.12 eV, respectively. Mott’s parameters were determined at low temperature. Seebeck coefficient indicates p -type conduction of NiTPP films. Carrier density, mobility and holes concentration were determined. Seebeck coefficient decreases with the increasing of temperature, while the conductivity increases with the increasing of temperature. The difference between the conductivity and the thermoelectric power activation energies was attributed to the potential barrier grain boundaries.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-014-8737-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2015-01, Vol.118 (1), p.345-351
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1660083324
source SpringerLink Journals - AutoHoldings
subjects Activation energy
Annealing
Carrier density
Characterization and Evaluation of Materials
Condensed Matter Physics
Electric power generation
Grain boundaries
Machines
Manufacturing
Materials science
Nanostructure
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Thermoelectricity
Thin Films
title Polaron activation energy of nano porphyrin nickel(II) thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polaron%20activation%20energy%20of%20nano%20porphyrin%20nickel(II)%20thin%20films&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Dongol,%20M.&rft.date=2015-01-01&rft.volume=118&rft.issue=1&rft.spage=345&rft.epage=351&rft.pages=345-351&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-014-8737-0&rft_dat=%3Cproquest_cross%3E1660083324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660083324&rft_id=info:pmid/&rfr_iscdi=true