Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology
This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2015-01, Vol.68, p.406-416 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | |
container_start_page | 406 |
container_title | Composites. Part A, Applied science and manufacturing |
container_volume | 68 |
creator | Qian, C.C. Harper, L.T. Turner, T.A. Warrior, N.A. |
description | This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length. |
doi_str_mv | 10.1016/j.compositesa.2014.08.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660082101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X14002577</els_id><sourcerecordid>1660082101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5165d361bf9c528a2973318a52372ed6e2ca9d9cb4d788cd403c8e6cb54ac99c3</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYsoqKPvEHduWpOmaRN3MvgHIwoqzC6kN6lmaJuapMLsfAff0Cexwwi6dHXv4pxz7_mS5ITgjGBSnq0ycN3ggo0mqCzHpMgwz3Be7CQHhFc8ZbzAu9NOmUg5Zcv95DCEFcaYUkEOkuVj9CPE0asWuSHazgYVreuRa5BXvXYd0jaA66PtRzcG1NjaG_R79Bw9KB8RQV8fn-jOxFenXete1kfJXqPaYI5_5ix5vrp8mt-ki_vr2_nFIoUCs5gyUjJNS1I3AljOVS4qSglXLKdVbnRpclBCC6gLXXEOusAUuCmhZoUCIYDOktNt7uDd22hClFMFMG2rejP9K0lZYszzCdYkFVspeBeCN40cvO2UX0uC5YamXMk_NOWGpsRcTjQn73zrNVOXd2u8DGBND0ZbbyBK7ew_Ur4BPkWGzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660082101</pqid></control><display><type>article</type><title>Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qian, C.C. ; Harper, L.T. ; Turner, T.A. ; Warrior, N.A.</creator><creatorcontrib>Qian, C.C. ; Harper, L.T. ; Turner, T.A. ; Warrior, N.A.</creatorcontrib><description>This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2014.08.024</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A: Discontinuous reinforcement ; A: Preform ; Bending ; C: Finite Element Analysis ; Deposition ; E: Automation ; Fiber composites ; Fibre ; Flat plates ; Mathematical models ; Optimization ; Stiffness</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2015-01, Vol.68, p.406-416</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-5165d361bf9c528a2973318a52372ed6e2ca9d9cb4d788cd403c8e6cb54ac99c3</citedby><cites>FETCH-LOGICAL-c405t-5165d361bf9c528a2973318a52372ed6e2ca9d9cb4d788cd403c8e6cb54ac99c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2014.08.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Qian, C.C.</creatorcontrib><creatorcontrib>Harper, L.T.</creatorcontrib><creatorcontrib>Turner, T.A.</creatorcontrib><creatorcontrib>Warrior, N.A.</creatorcontrib><title>Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology</title><title>Composites. Part A, Applied science and manufacturing</title><description>This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length.</description><subject>A: Discontinuous reinforcement</subject><subject>A: Preform</subject><subject>Bending</subject><subject>C: Finite Element Analysis</subject><subject>Deposition</subject><subject>E: Automation</subject><subject>Fiber composites</subject><subject>Fibre</subject><subject>Flat plates</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Stiffness</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAUhYsoqKPvEHduWpOmaRN3MvgHIwoqzC6kN6lmaJuapMLsfAff0Cexwwi6dHXv4pxz7_mS5ITgjGBSnq0ycN3ggo0mqCzHpMgwz3Be7CQHhFc8ZbzAu9NOmUg5Zcv95DCEFcaYUkEOkuVj9CPE0asWuSHazgYVreuRa5BXvXYd0jaA66PtRzcG1NjaG_R79Bw9KB8RQV8fn-jOxFenXete1kfJXqPaYI5_5ix5vrp8mt-ki_vr2_nFIoUCs5gyUjJNS1I3AljOVS4qSglXLKdVbnRpclBCC6gLXXEOusAUuCmhZoUCIYDOktNt7uDd22hClFMFMG2rejP9K0lZYszzCdYkFVspeBeCN40cvO2UX0uC5YamXMk_NOWGpsRcTjQn73zrNVOXd2u8DGBND0ZbbyBK7ew_Ur4BPkWGzA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Qian, C.C.</creator><creator>Harper, L.T.</creator><creator>Turner, T.A.</creator><creator>Warrior, N.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201501</creationdate><title>Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology</title><author>Qian, C.C. ; Harper, L.T. ; Turner, T.A. ; Warrior, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5165d361bf9c528a2973318a52372ed6e2ca9d9cb4d788cd403c8e6cb54ac99c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A: Discontinuous reinforcement</topic><topic>A: Preform</topic><topic>Bending</topic><topic>C: Finite Element Analysis</topic><topic>Deposition</topic><topic>E: Automation</topic><topic>Fiber composites</topic><topic>Fibre</topic><topic>Flat plates</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, C.C.</creatorcontrib><creatorcontrib>Harper, L.T.</creatorcontrib><creatorcontrib>Turner, T.A.</creatorcontrib><creatorcontrib>Warrior, N.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, C.C.</au><au>Harper, L.T.</au><au>Turner, T.A.</au><au>Warrior, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2015-01</date><risdate>2015</risdate><volume>68</volume><spage>406</spage><epage>416</epage><pages>406-416</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2014.08.024</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-835X |
ispartof | Composites. Part A, Applied science and manufacturing, 2015-01, Vol.68, p.406-416 |
issn | 1359-835X 1878-5840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660082101 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A: Discontinuous reinforcement A: Preform Bending C: Finite Element Analysis Deposition E: Automation Fiber composites Fibre Flat plates Mathematical models Optimization Stiffness |
title | Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20optimisation%20of%20random%20discontinuous%20fibre%20composites:%20Part%201%20%E2%80%93%20Methodology&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Qian,%20C.C.&rft.date=2015-01&rft.volume=68&rft.spage=406&rft.epage=416&rft.pages=406-416&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2014.08.024&rft_dat=%3Cproquest_cross%3E1660082101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660082101&rft_id=info:pmid/&rft_els_id=S1359835X14002577&rfr_iscdi=true |