Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology

This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2015-01, Vol.68, p.406-416
Hauptverfasser: Qian, C.C., Harper, L.T., Turner, T.A., Warrior, N.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue
container_start_page 406
container_title Composites. Part A, Applied science and manufacturing
container_volume 68
creator Qian, C.C.
Harper, L.T.
Turner, T.A.
Warrior, N.A.
description This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length.
doi_str_mv 10.1016/j.compositesa.2014.08.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660082101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X14002577</els_id><sourcerecordid>1660082101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5165d361bf9c528a2973318a52372ed6e2ca9d9cb4d788cd403c8e6cb54ac99c3</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYsoqKPvEHduWpOmaRN3MvgHIwoqzC6kN6lmaJuapMLsfAff0Cexwwi6dHXv4pxz7_mS5ITgjGBSnq0ycN3ggo0mqCzHpMgwz3Be7CQHhFc8ZbzAu9NOmUg5Zcv95DCEFcaYUkEOkuVj9CPE0asWuSHazgYVreuRa5BXvXYd0jaA66PtRzcG1NjaG_R79Bw9KB8RQV8fn-jOxFenXete1kfJXqPaYI5_5ix5vrp8mt-ki_vr2_nFIoUCs5gyUjJNS1I3AljOVS4qSglXLKdVbnRpclBCC6gLXXEOusAUuCmhZoUCIYDOktNt7uDd22hClFMFMG2rejP9K0lZYszzCdYkFVspeBeCN40cvO2UX0uC5YamXMk_NOWGpsRcTjQn73zrNVOXd2u8DGBND0ZbbyBK7ew_Ur4BPkWGzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660082101</pqid></control><display><type>article</type><title>Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qian, C.C. ; Harper, L.T. ; Turner, T.A. ; Warrior, N.A.</creator><creatorcontrib>Qian, C.C. ; Harper, L.T. ; Turner, T.A. ; Warrior, N.A.</creatorcontrib><description>This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2014.08.024</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A: Discontinuous reinforcement ; A: Preform ; Bending ; C: Finite Element Analysis ; Deposition ; E: Automation ; Fiber composites ; Fibre ; Flat plates ; Mathematical models ; Optimization ; Stiffness</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2015-01, Vol.68, p.406-416</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-5165d361bf9c528a2973318a52372ed6e2ca9d9cb4d788cd403c8e6cb54ac99c3</citedby><cites>FETCH-LOGICAL-c405t-5165d361bf9c528a2973318a52372ed6e2ca9d9cb4d788cd403c8e6cb54ac99c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2014.08.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Qian, C.C.</creatorcontrib><creatorcontrib>Harper, L.T.</creatorcontrib><creatorcontrib>Turner, T.A.</creatorcontrib><creatorcontrib>Warrior, N.A.</creatorcontrib><title>Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology</title><title>Composites. Part A, Applied science and manufacturing</title><description>This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length.</description><subject>A: Discontinuous reinforcement</subject><subject>A: Preform</subject><subject>Bending</subject><subject>C: Finite Element Analysis</subject><subject>Deposition</subject><subject>E: Automation</subject><subject>Fiber composites</subject><subject>Fibre</subject><subject>Flat plates</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Stiffness</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KxDAUhYsoqKPvEHduWpOmaRN3MvgHIwoqzC6kN6lmaJuapMLsfAff0Cexwwi6dHXv4pxz7_mS5ITgjGBSnq0ycN3ggo0mqCzHpMgwz3Be7CQHhFc8ZbzAu9NOmUg5Zcv95DCEFcaYUkEOkuVj9CPE0asWuSHazgYVreuRa5BXvXYd0jaA66PtRzcG1NjaG_R79Bw9KB8RQV8fn-jOxFenXete1kfJXqPaYI5_5ix5vrp8mt-ki_vr2_nFIoUCs5gyUjJNS1I3AljOVS4qSglXLKdVbnRpclBCC6gLXXEOusAUuCmhZoUCIYDOktNt7uDd22hClFMFMG2rejP9K0lZYszzCdYkFVspeBeCN40cvO2UX0uC5YamXMk_NOWGpsRcTjQn73zrNVOXd2u8DGBND0ZbbyBK7ew_Ur4BPkWGzA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Qian, C.C.</creator><creator>Harper, L.T.</creator><creator>Turner, T.A.</creator><creator>Warrior, N.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201501</creationdate><title>Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology</title><author>Qian, C.C. ; Harper, L.T. ; Turner, T.A. ; Warrior, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5165d361bf9c528a2973318a52372ed6e2ca9d9cb4d788cd403c8e6cb54ac99c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A: Discontinuous reinforcement</topic><topic>A: Preform</topic><topic>Bending</topic><topic>C: Finite Element Analysis</topic><topic>Deposition</topic><topic>E: Automation</topic><topic>Fiber composites</topic><topic>Fibre</topic><topic>Flat plates</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, C.C.</creatorcontrib><creatorcontrib>Harper, L.T.</creatorcontrib><creatorcontrib>Turner, T.A.</creatorcontrib><creatorcontrib>Warrior, N.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, C.C.</au><au>Harper, L.T.</au><au>Turner, T.A.</au><au>Warrior, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2015-01</date><risdate>2015</risdate><volume>68</volume><spage>406</spage><epage>416</epage><pages>406-416</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>This paper presents a finite element model to optimise the fibre architecture of components manufactured from discontinuous fibre composites. An optimality criterion method has been developed to maximise global component stiffness, by determining optimum distributions for local section thickness and preform areal mass. The model is demonstrated by optimising the bending performance of a flat plate with three holes. Results are presented from a sensitivity study to highlight the level of compromise in stiffness optimisation caused by manufacturing constraints associated with the fibre deposition method, such as the scale of component features relative to the fibre length.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2014.08.024</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2015-01, Vol.68, p.406-416
issn 1359-835X
1878-5840
language eng
recordid cdi_proquest_miscellaneous_1660082101
source ScienceDirect Journals (5 years ago - present)
subjects A: Discontinuous reinforcement
A: Preform
Bending
C: Finite Element Analysis
Deposition
E: Automation
Fiber composites
Fibre
Flat plates
Mathematical models
Optimization
Stiffness
title Structural optimisation of random discontinuous fibre composites: Part 1 – Methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20optimisation%20of%20random%20discontinuous%20fibre%20composites:%20Part%201%20%E2%80%93%20Methodology&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Qian,%20C.C.&rft.date=2015-01&rft.volume=68&rft.spage=406&rft.epage=416&rft.pages=406-416&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2014.08.024&rft_dat=%3Cproquest_cross%3E1660082101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660082101&rft_id=info:pmid/&rft_els_id=S1359835X14002577&rfr_iscdi=true