Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method
The design of wide-spectrum anti-reflection (AR) sub-wavelength structures (SWS) for InGaN-based solar cells is investigated in this study. The design parameters such as base diameter and height of the SWS, as well as the pitch and fill factor of the SWS array are studied numerically in this researc...
Gespeichert in:
Veröffentlicht in: | Optics and laser technology 2015-04, Vol.67, p.72-77 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | |
container_start_page | 72 |
container_title | Optics and laser technology |
container_volume | 67 |
creator | Yang, L.M. Pan, C.Y. Lu, F.P. Chang, C.W. Feng, S.W. Tu, L.W. |
description | The design of wide-spectrum anti-reflection (AR) sub-wavelength structures (SWS) for InGaN-based solar cells is investigated in this study. The design parameters such as base diameter and height of the SWS, as well as the pitch and fill factor of the SWS array are studied numerically in this research. The simulation is carried out by the finite-difference-time-domain (FDTD) analysis. We found that the simultaneous increase of the height of the SWS and the fill factor of the SWS array can effectively suppress the rising of the reflectance in the near-infrared range (1–2μm). The results of the reflectance vs. wavelength for SWS array are also compared with that of the double layer anti-reflection (DLAR) coating. In addition, the effective reflectance Reff which is based on AM 1.5G 1sun considerations for various conditions is listed in Table 1 for comparison. It shows that as the height equals to 500nm and the fill factor is greater than 0.83 (Reff=1.4%), or the fill factor equals to 1.0 and the height is greater than 200nm (Reff=1.7%), the effective reflectance of SWS array is lower than that of DLAR coating (Reff=2.6%).
•The height and fill factor are two key factors of the optimum AR SWS design.•Raising the height will reduce the Fresnel׳s reflection on SW cone surface.•Increasing fill factor can help to trap scattered light.•Raising height and fill factor simultaneously can effectively lower the reflectance. |
doi_str_mv | 10.1016/j.optlastec.2014.09.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660081513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003039921400245X</els_id><sourcerecordid>1660081513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-902fb4b744f10b94a3c1cfa857cca842d4cd9e849c6428cb6f4442608dc804943</originalsourceid><addsrcrecordid>eNqFUcFu1DAQjRBILIVvwMdycLATJ2sfVy0tlSq4lLPl2OOuV4m9eJyi_kc_GC-LuHIazZt5bzTvNc1HzlrO-Pj50KZjmQ0WsG3HuGiZaiv-qtlwuVW0G8Twutkw1jPaK9W9bd4hHhhjYhz6TfOyiyXQDH4GW0KKBNeJ_jJPMEN8LHuCJa-2rBmQOMDwGIlPmdzFW_ONTgbBEUyzycTCPCM5Qq7jpaLTMyl7ID7EUIC64D1kiBZoCUvt02JCJJc31w_XnwiGZZ3Nn-sLlH1y75s33swIH_7Wi-bHzZeHq6_0_vvt3dXuntpeyEIV6_wkpq0QnrNJCdNbbr2Rw9ZaI0XnhHUKpFB2FJ200-iFEN3IpLOSCSX6i-byrHvM6ecKWPQS8PSJiZBW1HwcGZN84H1d3Z5XbU6I1S99zGEx-Vlzpk856IP-l4M-5aCZ0hWvzN2ZCfWTpwBZow0nK1zI1XPtUvivxm9X0pij</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660081513</pqid></control><display><type>article</type><title>Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, L.M. ; Pan, C.Y. ; Lu, F.P. ; Chang, C.W. ; Feng, S.W. ; Tu, L.W.</creator><creatorcontrib>Yang, L.M. ; Pan, C.Y. ; Lu, F.P. ; Chang, C.W. ; Feng, S.W. ; Tu, L.W.</creatorcontrib><description>The design of wide-spectrum anti-reflection (AR) sub-wavelength structures (SWS) for InGaN-based solar cells is investigated in this study. The design parameters such as base diameter and height of the SWS, as well as the pitch and fill factor of the SWS array are studied numerically in this research. The simulation is carried out by the finite-difference-time-domain (FDTD) analysis. We found that the simultaneous increase of the height of the SWS and the fill factor of the SWS array can effectively suppress the rising of the reflectance in the near-infrared range (1–2μm). The results of the reflectance vs. wavelength for SWS array are also compared with that of the double layer anti-reflection (DLAR) coating. In addition, the effective reflectance Reff which is based on AM 1.5G 1sun considerations for various conditions is listed in Table 1 for comparison. It shows that as the height equals to 500nm and the fill factor is greater than 0.83 (Reff=1.4%), or the fill factor equals to 1.0 and the height is greater than 200nm (Reff=1.7%), the effective reflectance of SWS array is lower than that of DLAR coating (Reff=2.6%).
•The height and fill factor are two key factors of the optimum AR SWS design.•Raising the height will reduce the Fresnel׳s reflection on SW cone surface.•Increasing fill factor can help to trap scattered light.•Raising height and fill factor simultaneously can effectively lower the reflectance.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2014.09.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Arrays ; Design engineering ; FDTD simulation ; Finite difference time domain method ; Key parameters ; Mathematical models ; Photovoltaic cells ; Reflectance ; Reflectivity ; Solar cells ; SWS array</subject><ispartof>Optics and laser technology, 2015-04, Vol.67, p.72-77</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-902fb4b744f10b94a3c1cfa857cca842d4cd9e849c6428cb6f4442608dc804943</citedby><cites>FETCH-LOGICAL-c348t-902fb4b744f10b94a3c1cfa857cca842d4cd9e849c6428cb6f4442608dc804943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003039921400245X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, L.M.</creatorcontrib><creatorcontrib>Pan, C.Y.</creatorcontrib><creatorcontrib>Lu, F.P.</creatorcontrib><creatorcontrib>Chang, C.W.</creatorcontrib><creatorcontrib>Feng, S.W.</creatorcontrib><creatorcontrib>Tu, L.W.</creatorcontrib><title>Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method</title><title>Optics and laser technology</title><description>The design of wide-spectrum anti-reflection (AR) sub-wavelength structures (SWS) for InGaN-based solar cells is investigated in this study. The design parameters such as base diameter and height of the SWS, as well as the pitch and fill factor of the SWS array are studied numerically in this research. The simulation is carried out by the finite-difference-time-domain (FDTD) analysis. We found that the simultaneous increase of the height of the SWS and the fill factor of the SWS array can effectively suppress the rising of the reflectance in the near-infrared range (1–2μm). The results of the reflectance vs. wavelength for SWS array are also compared with that of the double layer anti-reflection (DLAR) coating. In addition, the effective reflectance Reff which is based on AM 1.5G 1sun considerations for various conditions is listed in Table 1 for comparison. It shows that as the height equals to 500nm and the fill factor is greater than 0.83 (Reff=1.4%), or the fill factor equals to 1.0 and the height is greater than 200nm (Reff=1.7%), the effective reflectance of SWS array is lower than that of DLAR coating (Reff=2.6%).
•The height and fill factor are two key factors of the optimum AR SWS design.•Raising the height will reduce the Fresnel׳s reflection on SW cone surface.•Increasing fill factor can help to trap scattered light.•Raising height and fill factor simultaneously can effectively lower the reflectance.</description><subject>Arrays</subject><subject>Design engineering</subject><subject>FDTD simulation</subject><subject>Finite difference time domain method</subject><subject>Key parameters</subject><subject>Mathematical models</subject><subject>Photovoltaic cells</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>Solar cells</subject><subject>SWS array</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUcFu1DAQjRBILIVvwMdycLATJ2sfVy0tlSq4lLPl2OOuV4m9eJyi_kc_GC-LuHIazZt5bzTvNc1HzlrO-Pj50KZjmQ0WsG3HuGiZaiv-qtlwuVW0G8Twutkw1jPaK9W9bd4hHhhjYhz6TfOyiyXQDH4GW0KKBNeJ_jJPMEN8LHuCJa-2rBmQOMDwGIlPmdzFW_ONTgbBEUyzycTCPCM5Qq7jpaLTMyl7ID7EUIC64D1kiBZoCUvt02JCJJc31w_XnwiGZZ3Nn-sLlH1y75s33swIH_7Wi-bHzZeHq6_0_vvt3dXuntpeyEIV6_wkpq0QnrNJCdNbbr2Rw9ZaI0XnhHUKpFB2FJ200-iFEN3IpLOSCSX6i-byrHvM6ecKWPQS8PSJiZBW1HwcGZN84H1d3Z5XbU6I1S99zGEx-Vlzpk856IP-l4M-5aCZ0hWvzN2ZCfWTpwBZow0nK1zI1XPtUvivxm9X0pij</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Yang, L.M.</creator><creator>Pan, C.Y.</creator><creator>Lu, F.P.</creator><creator>Chang, C.W.</creator><creator>Feng, S.W.</creator><creator>Tu, L.W.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150401</creationdate><title>Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method</title><author>Yang, L.M. ; Pan, C.Y. ; Lu, F.P. ; Chang, C.W. ; Feng, S.W. ; Tu, L.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-902fb4b744f10b94a3c1cfa857cca842d4cd9e849c6428cb6f4442608dc804943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Design engineering</topic><topic>FDTD simulation</topic><topic>Finite difference time domain method</topic><topic>Key parameters</topic><topic>Mathematical models</topic><topic>Photovoltaic cells</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>Solar cells</topic><topic>SWS array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, L.M.</creatorcontrib><creatorcontrib>Pan, C.Y.</creatorcontrib><creatorcontrib>Lu, F.P.</creatorcontrib><creatorcontrib>Chang, C.W.</creatorcontrib><creatorcontrib>Feng, S.W.</creatorcontrib><creatorcontrib>Tu, L.W.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, L.M.</au><au>Pan, C.Y.</au><au>Lu, F.P.</au><au>Chang, C.W.</au><au>Feng, S.W.</au><au>Tu, L.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method</atitle><jtitle>Optics and laser technology</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>67</volume><spage>72</spage><epage>77</epage><pages>72-77</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>The design of wide-spectrum anti-reflection (AR) sub-wavelength structures (SWS) for InGaN-based solar cells is investigated in this study. The design parameters such as base diameter and height of the SWS, as well as the pitch and fill factor of the SWS array are studied numerically in this research. The simulation is carried out by the finite-difference-time-domain (FDTD) analysis. We found that the simultaneous increase of the height of the SWS and the fill factor of the SWS array can effectively suppress the rising of the reflectance in the near-infrared range (1–2μm). The results of the reflectance vs. wavelength for SWS array are also compared with that of the double layer anti-reflection (DLAR) coating. In addition, the effective reflectance Reff which is based on AM 1.5G 1sun considerations for various conditions is listed in Table 1 for comparison. It shows that as the height equals to 500nm and the fill factor is greater than 0.83 (Reff=1.4%), or the fill factor equals to 1.0 and the height is greater than 200nm (Reff=1.7%), the effective reflectance of SWS array is lower than that of DLAR coating (Reff=2.6%).
•The height and fill factor are two key factors of the optimum AR SWS design.•Raising the height will reduce the Fresnel׳s reflection on SW cone surface.•Increasing fill factor can help to trap scattered light.•Raising height and fill factor simultaneously can effectively lower the reflectance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2014.09.016</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-3992 |
ispartof | Optics and laser technology, 2015-04, Vol.67, p.72-77 |
issn | 0030-3992 1879-2545 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660081513 |
source | Elsevier ScienceDirect Journals |
subjects | Arrays Design engineering FDTD simulation Finite difference time domain method Key parameters Mathematical models Photovoltaic cells Reflectance Reflectivity Solar cells SWS array |
title | Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-reflection%20sub-wavelength%20structures%20design%20for%20InGaN-based%20solar%20cells%20performed%20by%20the%20finite-difference-time-domain%20(FDTD)%20simulation%20method&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Yang,%20L.M.&rft.date=2015-04-01&rft.volume=67&rft.spage=72&rft.epage=77&rft.pages=72-77&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2014.09.016&rft_dat=%3Cproquest_cross%3E1660081513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660081513&rft_id=info:pmid/&rft_els_id=S003039921400245X&rfr_iscdi=true |