Piezoelectric nanogenerator based on a flexible carbon-fiber/ZnO–ZnSe bilayer structure wire

•The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber were synthesized via two-step hydrothermal method.•The nanogenerator device produced high-output current about 333μA.•The output current can be further enhanced by 66%. The pin-shaped ZnO–ZnSe nanowire arrays on the surface of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2014-12, Vol.322, p.95-100
Hauptverfasser: Liu, Chunlei, Zhang, Weiguang, Sun, Jianbo, Wen, Jing, Yang, Qing, Cuo, Huixin, Ma, Xinzhi, Zhang, Mingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue
container_start_page 95
container_title Applied surface science
container_volume 322
creator Liu, Chunlei
Zhang, Weiguang
Sun, Jianbo
Wen, Jing
Yang, Qing
Cuo, Huixin
Ma, Xinzhi
Zhang, Mingyi
description •The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber were synthesized via two-step hydrothermal method.•The nanogenerator device produced high-output current about 333μA.•The output current can be further enhanced by 66%. The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber (CF/ZnO–ZnSe) were synthesized via two-step hydrothermal method. Based on a single CF/ZnO–ZnSe on a polymer substrate, a flexible nanogenerator device was fabricated which produced high-output current about 333μA when the device was subjected to a −0.55% tensile strain and the current was enhanced by as much as 66%. The superior piezoelectric performance is derived from the piezopotential in ZnO nanowire arrays induced by the compressive strain or tensile strain, which lowers or raises the barrier height and increases or decreases the current density at the ZnO–ZnSe heterojunction interface. This kind of CF/ZnO–ZnSe bilayer structure has a great potential for nanogenerator device and this result opens up the path for practical applications of piezoelectric nanogenerator.
doi_str_mv 10.1016/j.apsusc.2014.10.081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660079551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433214023204</els_id><sourcerecordid>1660079551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-fa35843e5de092597992ac7914443e620372c655e6fb48c01f08b3783bb7922e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKtv4CIbwc2MucwtG0GKNxAU1E0XhiQ9IyljUpMZta58B9_QJzGlxaWrwJ_v3D6EDinJKaHVyTxXizhEkzNCixTlpKFbaESbmmdl2RTbaJQwkRWcs120F-OcEMrS7wg93Vn49NCB6YM12Cnnn8FBUL0PWKsIM-wdVrjt4MPqDrBRQXuXtVZDOJm625-v76m7B6xtp5YQcOzDYPohAH63AfbRTqu6CAebd4weL84fJlfZze3l9eTsJjO8En3WKp7W5FDOgAhWiloIpkwtaFGktGKE18xUZQlVq4vGENqSRvO64VrXgjHgY3S87rsI_nWA2MsXGw10nXLghyhpVRFSi7KkCS3WqAk-xgCtXAT7osJSUiJXOuVcrnXKlc5VmnSmsqPNBBWN6tqgnLHxr5YJwtOyLHGnaw7SuW8WgozGgjMwSzpML2fe_j_oF7M2jf8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660079551</pqid></control><display><type>article</type><title>Piezoelectric nanogenerator based on a flexible carbon-fiber/ZnO–ZnSe bilayer structure wire</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Chunlei ; Zhang, Weiguang ; Sun, Jianbo ; Wen, Jing ; Yang, Qing ; Cuo, Huixin ; Ma, Xinzhi ; Zhang, Mingyi</creator><creatorcontrib>Liu, Chunlei ; Zhang, Weiguang ; Sun, Jianbo ; Wen, Jing ; Yang, Qing ; Cuo, Huixin ; Ma, Xinzhi ; Zhang, Mingyi</creatorcontrib><description>•The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber were synthesized via two-step hydrothermal method.•The nanogenerator device produced high-output current about 333μA.•The output current can be further enhanced by 66%. The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber (CF/ZnO–ZnSe) were synthesized via two-step hydrothermal method. Based on a single CF/ZnO–ZnSe on a polymer substrate, a flexible nanogenerator device was fabricated which produced high-output current about 333μA when the device was subjected to a −0.55% tensile strain and the current was enhanced by as much as 66%. The superior piezoelectric performance is derived from the piezopotential in ZnO nanowire arrays induced by the compressive strain or tensile strain, which lowers or raises the barrier height and increases or decreases the current density at the ZnO–ZnSe heterojunction interface. This kind of CF/ZnO–ZnSe bilayer structure has a great potential for nanogenerator device and this result opens up the path for practical applications of piezoelectric nanogenerator.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2014.10.081</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Arrays ; Carbon fibers ; Carbon–fiber/ZnO–ZnSe ; Compressive properties ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Devices ; Exact sciences and technology ; High-output current ; Nanogenerator ; Nanostructure ; Physics ; Piezoelectric ; Piezoelectricity ; Strain ; Wire</subject><ispartof>Applied surface science, 2014-12, Vol.322, p.95-100</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-fa35843e5de092597992ac7914443e620372c655e6fb48c01f08b3783bb7922e3</citedby><cites>FETCH-LOGICAL-c369t-fa35843e5de092597992ac7914443e620372c655e6fb48c01f08b3783bb7922e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apsusc.2014.10.081$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29034442$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Chunlei</creatorcontrib><creatorcontrib>Zhang, Weiguang</creatorcontrib><creatorcontrib>Sun, Jianbo</creatorcontrib><creatorcontrib>Wen, Jing</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Cuo, Huixin</creatorcontrib><creatorcontrib>Ma, Xinzhi</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><title>Piezoelectric nanogenerator based on a flexible carbon-fiber/ZnO–ZnSe bilayer structure wire</title><title>Applied surface science</title><description>•The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber were synthesized via two-step hydrothermal method.•The nanogenerator device produced high-output current about 333μA.•The output current can be further enhanced by 66%. The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber (CF/ZnO–ZnSe) were synthesized via two-step hydrothermal method. Based on a single CF/ZnO–ZnSe on a polymer substrate, a flexible nanogenerator device was fabricated which produced high-output current about 333μA when the device was subjected to a −0.55% tensile strain and the current was enhanced by as much as 66%. The superior piezoelectric performance is derived from the piezopotential in ZnO nanowire arrays induced by the compressive strain or tensile strain, which lowers or raises the barrier height and increases or decreases the current density at the ZnO–ZnSe heterojunction interface. This kind of CF/ZnO–ZnSe bilayer structure has a great potential for nanogenerator device and this result opens up the path for practical applications of piezoelectric nanogenerator.</description><subject>Arrays</subject><subject>Carbon fibers</subject><subject>Carbon–fiber/ZnO–ZnSe</subject><subject>Compressive properties</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>High-output current</subject><subject>Nanogenerator</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Piezoelectric</subject><subject>Piezoelectricity</subject><subject>Strain</subject><subject>Wire</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKtv4CIbwc2MucwtG0GKNxAU1E0XhiQ9IyljUpMZta58B9_QJzGlxaWrwJ_v3D6EDinJKaHVyTxXizhEkzNCixTlpKFbaESbmmdl2RTbaJQwkRWcs120F-OcEMrS7wg93Vn49NCB6YM12Cnnn8FBUL0PWKsIM-wdVrjt4MPqDrBRQXuXtVZDOJm625-v76m7B6xtp5YQcOzDYPohAH63AfbRTqu6CAebd4weL84fJlfZze3l9eTsJjO8En3WKp7W5FDOgAhWiloIpkwtaFGktGKE18xUZQlVq4vGENqSRvO64VrXgjHgY3S87rsI_nWA2MsXGw10nXLghyhpVRFSi7KkCS3WqAk-xgCtXAT7osJSUiJXOuVcrnXKlc5VmnSmsqPNBBWN6tqgnLHxr5YJwtOyLHGnaw7SuW8WgozGgjMwSzpML2fe_j_oF7M2jf8</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Liu, Chunlei</creator><creator>Zhang, Weiguang</creator><creator>Sun, Jianbo</creator><creator>Wen, Jing</creator><creator>Yang, Qing</creator><creator>Cuo, Huixin</creator><creator>Ma, Xinzhi</creator><creator>Zhang, Mingyi</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141215</creationdate><title>Piezoelectric nanogenerator based on a flexible carbon-fiber/ZnO–ZnSe bilayer structure wire</title><author>Liu, Chunlei ; Zhang, Weiguang ; Sun, Jianbo ; Wen, Jing ; Yang, Qing ; Cuo, Huixin ; Ma, Xinzhi ; Zhang, Mingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-fa35843e5de092597992ac7914443e620372c655e6fb48c01f08b3783bb7922e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arrays</topic><topic>Carbon fibers</topic><topic>Carbon–fiber/ZnO–ZnSe</topic><topic>Compressive properties</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>High-output current</topic><topic>Nanogenerator</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Piezoelectric</topic><topic>Piezoelectricity</topic><topic>Strain</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Chunlei</creatorcontrib><creatorcontrib>Zhang, Weiguang</creatorcontrib><creatorcontrib>Sun, Jianbo</creatorcontrib><creatorcontrib>Wen, Jing</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Cuo, Huixin</creatorcontrib><creatorcontrib>Ma, Xinzhi</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Chunlei</au><au>Zhang, Weiguang</au><au>Sun, Jianbo</au><au>Wen, Jing</au><au>Yang, Qing</au><au>Cuo, Huixin</au><au>Ma, Xinzhi</au><au>Zhang, Mingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectric nanogenerator based on a flexible carbon-fiber/ZnO–ZnSe bilayer structure wire</atitle><jtitle>Applied surface science</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>322</volume><spage>95</spage><epage>100</epage><pages>95-100</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber were synthesized via two-step hydrothermal method.•The nanogenerator device produced high-output current about 333μA.•The output current can be further enhanced by 66%. The pin-shaped ZnO–ZnSe nanowire arrays on the surface of a carbon fiber (CF/ZnO–ZnSe) were synthesized via two-step hydrothermal method. Based on a single CF/ZnO–ZnSe on a polymer substrate, a flexible nanogenerator device was fabricated which produced high-output current about 333μA when the device was subjected to a −0.55% tensile strain and the current was enhanced by as much as 66%. The superior piezoelectric performance is derived from the piezopotential in ZnO nanowire arrays induced by the compressive strain or tensile strain, which lowers or raises the barrier height and increases or decreases the current density at the ZnO–ZnSe heterojunction interface. This kind of CF/ZnO–ZnSe bilayer structure has a great potential for nanogenerator device and this result opens up the path for practical applications of piezoelectric nanogenerator.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2014.10.081</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2014-12, Vol.322, p.95-100
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1660079551
source ScienceDirect Journals (5 years ago - present)
subjects Arrays
Carbon fibers
Carbon–fiber/ZnO–ZnSe
Compressive properties
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Devices
Exact sciences and technology
High-output current
Nanogenerator
Nanostructure
Physics
Piezoelectric
Piezoelectricity
Strain
Wire
title Piezoelectric nanogenerator based on a flexible carbon-fiber/ZnO–ZnSe bilayer structure wire
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectric%20nanogenerator%20based%20on%20a%20flexible%20carbon-fiber/ZnO%E2%80%93ZnSe%20bilayer%20structure%20wire&rft.jtitle=Applied%20surface%20science&rft.au=Liu,%20Chunlei&rft.date=2014-12-15&rft.volume=322&rft.spage=95&rft.epage=100&rft.pages=95-100&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2014.10.081&rft_dat=%3Cproquest_cross%3E1660079551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660079551&rft_id=info:pmid/&rft_els_id=S0169433214023204&rfr_iscdi=true