Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2+ in 100% aqueous solution

Graphene quantum dots (GQDs) have successfully been utilized as efficient nano-sized fluorescence chemosensor to detect selectively Hg2+ in 100% aqueous solution (pH 7). The selectivity and sensitivity of the probe have been investigated by employing a number of spectroscopic techniques. The probe f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials letters 2013-04, Vol.97, p.78-80
Hauptverfasser: Chakraborti, Himadri, Sinha, Sougata, Ghosh, Subrata, Pal, Suman Kalyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue
container_start_page 78
container_title Materials letters
container_volume 97
creator Chakraborti, Himadri
Sinha, Sougata
Ghosh, Subrata
Pal, Suman Kalyan
description Graphene quantum dots (GQDs) have successfully been utilized as efficient nano-sized fluorescence chemosensor to detect selectively Hg2+ in 100% aqueous solution (pH 7). The selectivity and sensitivity of the probe have been investigated by employing a number of spectroscopic techniques. The probe follows a ‘turn-off’ mechanism while sensing the highly toxic pollutant Hg2+. Steady state and time-resolved spectroscopic studies ensure that the adsorption of Hg2+ onto the surface of GQDs leads to the change in electronic structure of the probe which ultimately results in the quenching of fluorescence of GQDs. The capability of GQDs to detect Hg2+ under physiological conditions makes them interesting and useful sensing devices for biological applications. [Display omitted] ► Graphene quantum dots (GQDs) as efficient sensor for highly toxic mercury ions. ► The probe works in aqueous solution at physiological conditions. ► Detection process follows fluorescence ‘turn-off’ mechanism. ► Fluorescence quenching is due to the perturbation in the electronic structure of GQD as a result of adsorption of Hg2+ onto its surface.
doi_str_mv 10.1016/j.matlet.2013.01.094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660078742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X13001262</els_id><sourcerecordid>1660078742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-24f08138321f47040cf83da5e54d6dd30fbd48ef26f7f9f74aac211d280865b63</originalsourceid><addsrcrecordid>eNqNkUGL1TAUhYso-Bz9B4LZCIK03qRp07oQZNCZgQEXOuAu5CU37-XRJm-S1MG9P9zUuhZXCeE7OfeeU1UvKTQUaP_u1MwqT5gbBrRtgDYw8kfVjg6irfkoxsfVrmCi7oT4_rR6ltIJAPgIfFf9uvEZo1Xa-QN5UOVOUpiW_YTEKx_m9cWpKZEHl4_ETkuImDR6jUQfcQ4JfSrS9-QqqvMRPZL7Rfm8zMSETHIgBjPqTK4P7C1xnlCA10TdLxiW9Mcpu-CfV09s8cAXf8-L6u7zp2-X1_Xtl6uby4-3tW5Zn2vGLQy0HVpGLRfAQduhNarDjpvemBbs3vABLeutsKMVXCnNKDVsgKHv9n17Ub3Z_j3HUEZIWc6uLDNNyq_zSNr3AGIQnP0H2vFesJJhQfmG6hhSimjlObpZxZ-Sglz7kSe59SPXfiRQWfopslebzKog1SG6JO--FqAr3bBuZGMhPmwElkx-OIwyabdGb1wsmUoT3L8tfgMpKaWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654672904</pqid></control><display><type>article</type><title>Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2+ in 100% aqueous solution</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chakraborti, Himadri ; Sinha, Sougata ; Ghosh, Subrata ; Pal, Suman Kalyan</creator><creatorcontrib>Chakraborti, Himadri ; Sinha, Sougata ; Ghosh, Subrata ; Pal, Suman Kalyan</creatorcontrib><description>Graphene quantum dots (GQDs) have successfully been utilized as efficient nano-sized fluorescence chemosensor to detect selectively Hg2+ in 100% aqueous solution (pH 7). The selectivity and sensitivity of the probe have been investigated by employing a number of spectroscopic techniques. The probe follows a ‘turn-off’ mechanism while sensing the highly toxic pollutant Hg2+. Steady state and time-resolved spectroscopic studies ensure that the adsorption of Hg2+ onto the surface of GQDs leads to the change in electronic structure of the probe which ultimately results in the quenching of fluorescence of GQDs. The capability of GQDs to detect Hg2+ under physiological conditions makes them interesting and useful sensing devices for biological applications. [Display omitted] ► Graphene quantum dots (GQDs) as efficient sensor for highly toxic mercury ions. ► The probe works in aqueous solution at physiological conditions. ► Detection process follows fluorescence ‘turn-off’ mechanism. ► Fluorescence quenching is due to the perturbation in the electronic structure of GQD as a result of adsorption of Hg2+ onto its surface.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2013.01.094</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>adsorption ; Aqueous solutions ; Carbon materials ; Fluorescence ; Fluorescence lifetime ; Graphene ; mercury ; Nanomaterials ; Nanostructure ; quantum dots ; Qunatum dots ; Sensing devices ; Sensors ; Spectroscopy ; Surface chemistry ; toxicity ; Turn-off</subject><ispartof>Materials letters, 2013-04, Vol.97, p.78-80</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-24f08138321f47040cf83da5e54d6dd30fbd48ef26f7f9f74aac211d280865b63</citedby><cites>FETCH-LOGICAL-c326t-24f08138321f47040cf83da5e54d6dd30fbd48ef26f7f9f74aac211d280865b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matlet.2013.01.094$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Chakraborti, Himadri</creatorcontrib><creatorcontrib>Sinha, Sougata</creatorcontrib><creatorcontrib>Ghosh, Subrata</creatorcontrib><creatorcontrib>Pal, Suman Kalyan</creatorcontrib><title>Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2+ in 100% aqueous solution</title><title>Materials letters</title><description>Graphene quantum dots (GQDs) have successfully been utilized as efficient nano-sized fluorescence chemosensor to detect selectively Hg2+ in 100% aqueous solution (pH 7). The selectivity and sensitivity of the probe have been investigated by employing a number of spectroscopic techniques. The probe follows a ‘turn-off’ mechanism while sensing the highly toxic pollutant Hg2+. Steady state and time-resolved spectroscopic studies ensure that the adsorption of Hg2+ onto the surface of GQDs leads to the change in electronic structure of the probe which ultimately results in the quenching of fluorescence of GQDs. The capability of GQDs to detect Hg2+ under physiological conditions makes them interesting and useful sensing devices for biological applications. [Display omitted] ► Graphene quantum dots (GQDs) as efficient sensor for highly toxic mercury ions. ► The probe works in aqueous solution at physiological conditions. ► Detection process follows fluorescence ‘turn-off’ mechanism. ► Fluorescence quenching is due to the perturbation in the electronic structure of GQD as a result of adsorption of Hg2+ onto its surface.</description><subject>adsorption</subject><subject>Aqueous solutions</subject><subject>Carbon materials</subject><subject>Fluorescence</subject><subject>Fluorescence lifetime</subject><subject>Graphene</subject><subject>mercury</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>quantum dots</subject><subject>Qunatum dots</subject><subject>Sensing devices</subject><subject>Sensors</subject><subject>Spectroscopy</subject><subject>Surface chemistry</subject><subject>toxicity</subject><subject>Turn-off</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUGL1TAUhYso-Bz9B4LZCIK03qRp07oQZNCZgQEXOuAu5CU37-XRJm-S1MG9P9zUuhZXCeE7OfeeU1UvKTQUaP_u1MwqT5gbBrRtgDYw8kfVjg6irfkoxsfVrmCi7oT4_rR6ltIJAPgIfFf9uvEZo1Xa-QN5UOVOUpiW_YTEKx_m9cWpKZEHl4_ETkuImDR6jUQfcQ4JfSrS9-QqqvMRPZL7Rfm8zMSETHIgBjPqTK4P7C1xnlCA10TdLxiW9Mcpu-CfV09s8cAXf8-L6u7zp2-X1_Xtl6uby4-3tW5Zn2vGLQy0HVpGLRfAQduhNarDjpvemBbs3vABLeutsKMVXCnNKDVsgKHv9n17Ub3Z_j3HUEZIWc6uLDNNyq_zSNr3AGIQnP0H2vFesJJhQfmG6hhSimjlObpZxZ-Sglz7kSe59SPXfiRQWfopslebzKog1SG6JO--FqAr3bBuZGMhPmwElkx-OIwyabdGb1wsmUoT3L8tfgMpKaWo</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Chakraborti, Himadri</creator><creator>Sinha, Sougata</creator><creator>Ghosh, Subrata</creator><creator>Pal, Suman Kalyan</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2+ in 100% aqueous solution</title><author>Chakraborti, Himadri ; Sinha, Sougata ; Ghosh, Subrata ; Pal, Suman Kalyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-24f08138321f47040cf83da5e54d6dd30fbd48ef26f7f9f74aac211d280865b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adsorption</topic><topic>Aqueous solutions</topic><topic>Carbon materials</topic><topic>Fluorescence</topic><topic>Fluorescence lifetime</topic><topic>Graphene</topic><topic>mercury</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>quantum dots</topic><topic>Qunatum dots</topic><topic>Sensing devices</topic><topic>Sensors</topic><topic>Spectroscopy</topic><topic>Surface chemistry</topic><topic>toxicity</topic><topic>Turn-off</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborti, Himadri</creatorcontrib><creatorcontrib>Sinha, Sougata</creatorcontrib><creatorcontrib>Ghosh, Subrata</creatorcontrib><creatorcontrib>Pal, Suman Kalyan</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborti, Himadri</au><au>Sinha, Sougata</au><au>Ghosh, Subrata</au><au>Pal, Suman Kalyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2+ in 100% aqueous solution</atitle><jtitle>Materials letters</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>97</volume><spage>78</spage><epage>80</epage><pages>78-80</pages><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>Graphene quantum dots (GQDs) have successfully been utilized as efficient nano-sized fluorescence chemosensor to detect selectively Hg2+ in 100% aqueous solution (pH 7). The selectivity and sensitivity of the probe have been investigated by employing a number of spectroscopic techniques. The probe follows a ‘turn-off’ mechanism while sensing the highly toxic pollutant Hg2+. Steady state and time-resolved spectroscopic studies ensure that the adsorption of Hg2+ onto the surface of GQDs leads to the change in electronic structure of the probe which ultimately results in the quenching of fluorescence of GQDs. The capability of GQDs to detect Hg2+ under physiological conditions makes them interesting and useful sensing devices for biological applications. [Display omitted] ► Graphene quantum dots (GQDs) as efficient sensor for highly toxic mercury ions. ► The probe works in aqueous solution at physiological conditions. ► Detection process follows fluorescence ‘turn-off’ mechanism. ► Fluorescence quenching is due to the perturbation in the electronic structure of GQD as a result of adsorption of Hg2+ onto its surface.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2013.01.094</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2013-04, Vol.97, p.78-80
issn 0167-577X
1873-4979
language eng
recordid cdi_proquest_miscellaneous_1660078742
source ScienceDirect Journals (5 years ago - present)
subjects adsorption
Aqueous solutions
Carbon materials
Fluorescence
Fluorescence lifetime
Graphene
mercury
Nanomaterials
Nanostructure
quantum dots
Qunatum dots
Sensing devices
Sensors
Spectroscopy
Surface chemistry
toxicity
Turn-off
title Interfacing water soluble nanomaterials with fluorescence chemosensing: Graphene quantum dot to detect Hg2+ in 100% aqueous solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacing%20water%20soluble%20nanomaterials%20with%20fluorescence%20chemosensing:%20Graphene%20quantum%20dot%20to%20detect%20Hg2+%20in%20100%25%20aqueous%20solution&rft.jtitle=Materials%20letters&rft.au=Chakraborti,%20Himadri&rft.date=2013-04-01&rft.volume=97&rft.spage=78&rft.epage=80&rft.pages=78-80&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2013.01.094&rft_dat=%3Cproquest_cross%3E1660078742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654672904&rft_id=info:pmid/&rft_els_id=S0167577X13001262&rfr_iscdi=true