Nanoconfined LiBH sub(4) as a Fast Lithium Ion Conductor

Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid-state batteries. LiBH sub(4) is a promising solid electrolyte for Li-ion batteries. It displays high lithium mobility, although only above 110 degree C at which a tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2015-01, Vol.25 (2), p.184-192
Hauptverfasser: Blanchard, Didier, Nale, Angeloclaudio, Sveinbjornsson, Dadi, Eggenhuisen, Tamara M, Verkuijlen, Margriet HW, Vegge, Tejs, Kentgens, Arno PM, de Jongh, Petra E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 184
container_title Advanced functional materials
container_volume 25
creator Blanchard, Didier
Nale, Angeloclaudio
Sveinbjornsson, Dadi
Eggenhuisen, Tamara M
Verkuijlen, Margriet HW
Vegge, Tejs
Kentgens, Arno PM
de Jongh, Petra E
description Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid-state batteries. LiBH sub(4) is a promising solid electrolyte for Li-ion batteries. It displays high lithium mobility, although only above 110 degree C at which a transition to a high temperature hexagonal structure occurs. Herein, it is shown that confining LiBH sub(4) in the pores of ordered mesoporous silica scaffolds leads to high Li super(+) conductivity (0.1 mS cm super(-1)) at room temperature. This is a surprisingly high value, especially given that the nanocomposites comprise 42 vol% of SiO sub(2). Solid state super(7)Li NMR confirmed that the high conductivity can be attributed to a very high Li super(+) mobility in the solid phase at room temperature. Confinement of LiBH sub(4) in the pores leads also to a lower solid-solid phase transition temperature than for bulk LiBH sub(4). However, the high ionic mobility is associated with a fraction of the confined borohydride that shows no phase transition, and most likely located close to the interface with the SiO sub(2) pore walls. These results point to a new strategy to design low-temperature ion conducting solids for application in all solid-state lithium ion batteries, which could enable safe use of Li-metal anodes. Confining LiBH sub(4) inside nanopores of mesoporous silica results in stable and high Li super(+) mobilities persisting to room temperature. The mobility is associated with a LiBH sub(4) phase that does not undergo a structural phase transition, a phase probably located within 1.0 nanometer of the pore walls. This presents a new strategy to design efficient electrolytes for all solid-state rechargeable lithium batteries.
doi_str_mv 10.1002/adfm.201402538
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660077496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660077496</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_16600774963</originalsourceid><addsrcrecordid>eNqVij0PgjAUABujifixOnfEAXylWHCVSDAxTg5upEKJNdAqj_5_HYy7010uR8iKQcgAoo2smy6MgMUQbXk6Ih4TTAQconT8c3adkhniA4AlCY89kp6lsZU1jTaqpie9Lyi6mx-vqUQqaS5x-NThrl1Hj9bQzJraVYPtF2TSyBbV8ss58fPDJSuCZ29fTuFQdhor1bbSKOuwZEIAJEm8E_yP9Q3-Ij8G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660077496</pqid></control><display><type>article</type><title>Nanoconfined LiBH sub(4) as a Fast Lithium Ion Conductor</title><source>Access via Wiley Online Library</source><creator>Blanchard, Didier ; Nale, Angeloclaudio ; Sveinbjornsson, Dadi ; Eggenhuisen, Tamara M ; Verkuijlen, Margriet HW ; Vegge, Tejs ; Kentgens, Arno PM ; de Jongh, Petra E</creator><creatorcontrib>Blanchard, Didier ; Nale, Angeloclaudio ; Sveinbjornsson, Dadi ; Eggenhuisen, Tamara M ; Verkuijlen, Margriet HW ; Vegge, Tejs ; Kentgens, Arno PM ; de Jongh, Petra E</creatorcontrib><description>Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid-state batteries. LiBH sub(4) is a promising solid electrolyte for Li-ion batteries. It displays high lithium mobility, although only above 110 degree C at which a transition to a high temperature hexagonal structure occurs. Herein, it is shown that confining LiBH sub(4) in the pores of ordered mesoporous silica scaffolds leads to high Li super(+) conductivity (0.1 mS cm super(-1)) at room temperature. This is a surprisingly high value, especially given that the nanocomposites comprise 42 vol% of SiO sub(2). Solid state super(7)Li NMR confirmed that the high conductivity can be attributed to a very high Li super(+) mobility in the solid phase at room temperature. Confinement of LiBH sub(4) in the pores leads also to a lower solid-solid phase transition temperature than for bulk LiBH sub(4). However, the high ionic mobility is associated with a fraction of the confined borohydride that shows no phase transition, and most likely located close to the interface with the SiO sub(2) pore walls. These results point to a new strategy to design low-temperature ion conducting solids for application in all solid-state lithium ion batteries, which could enable safe use of Li-metal anodes. Confining LiBH sub(4) inside nanopores of mesoporous silica results in stable and high Li super(+) mobilities persisting to room temperature. The mobility is associated with a LiBH sub(4) phase that does not undergo a structural phase transition, a phase probably located within 1.0 nanometer of the pore walls. This presents a new strategy to design efficient electrolytes for all solid-state rechargeable lithium batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201402538</identifier><language>eng</language><subject>Confining ; Lithium ; Lithium batteries ; Nanostructure ; Phase transformations ; Porosity ; Silicon dioxide ; Walls</subject><ispartof>Advanced functional materials, 2015-01, Vol.25 (2), p.184-192</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Blanchard, Didier</creatorcontrib><creatorcontrib>Nale, Angeloclaudio</creatorcontrib><creatorcontrib>Sveinbjornsson, Dadi</creatorcontrib><creatorcontrib>Eggenhuisen, Tamara M</creatorcontrib><creatorcontrib>Verkuijlen, Margriet HW</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Kentgens, Arno PM</creatorcontrib><creatorcontrib>de Jongh, Petra E</creatorcontrib><title>Nanoconfined LiBH sub(4) as a Fast Lithium Ion Conductor</title><title>Advanced functional materials</title><description>Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid-state batteries. LiBH sub(4) is a promising solid electrolyte for Li-ion batteries. It displays high lithium mobility, although only above 110 degree C at which a transition to a high temperature hexagonal structure occurs. Herein, it is shown that confining LiBH sub(4) in the pores of ordered mesoporous silica scaffolds leads to high Li super(+) conductivity (0.1 mS cm super(-1)) at room temperature. This is a surprisingly high value, especially given that the nanocomposites comprise 42 vol% of SiO sub(2). Solid state super(7)Li NMR confirmed that the high conductivity can be attributed to a very high Li super(+) mobility in the solid phase at room temperature. Confinement of LiBH sub(4) in the pores leads also to a lower solid-solid phase transition temperature than for bulk LiBH sub(4). However, the high ionic mobility is associated with a fraction of the confined borohydride that shows no phase transition, and most likely located close to the interface with the SiO sub(2) pore walls. These results point to a new strategy to design low-temperature ion conducting solids for application in all solid-state lithium ion batteries, which could enable safe use of Li-metal anodes. Confining LiBH sub(4) inside nanopores of mesoporous silica results in stable and high Li super(+) mobilities persisting to room temperature. The mobility is associated with a LiBH sub(4) phase that does not undergo a structural phase transition, a phase probably located within 1.0 nanometer of the pore walls. This presents a new strategy to design efficient electrolytes for all solid-state rechargeable lithium batteries.</description><subject>Confining</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Nanostructure</subject><subject>Phase transformations</subject><subject>Porosity</subject><subject>Silicon dioxide</subject><subject>Walls</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVij0PgjAUABujifixOnfEAXylWHCVSDAxTg5upEKJNdAqj_5_HYy7010uR8iKQcgAoo2smy6MgMUQbXk6Ih4TTAQconT8c3adkhniA4AlCY89kp6lsZU1jTaqpie9Lyi6mx-vqUQqaS5x-NThrl1Hj9bQzJraVYPtF2TSyBbV8ss58fPDJSuCZ29fTuFQdhor1bbSKOuwZEIAJEm8E_yP9Q3-Ij8G</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Blanchard, Didier</creator><creator>Nale, Angeloclaudio</creator><creator>Sveinbjornsson, Dadi</creator><creator>Eggenhuisen, Tamara M</creator><creator>Verkuijlen, Margriet HW</creator><creator>Vegge, Tejs</creator><creator>Kentgens, Arno PM</creator><creator>de Jongh, Petra E</creator><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Nanoconfined LiBH sub(4) as a Fast Lithium Ion Conductor</title><author>Blanchard, Didier ; Nale, Angeloclaudio ; Sveinbjornsson, Dadi ; Eggenhuisen, Tamara M ; Verkuijlen, Margriet HW ; Vegge, Tejs ; Kentgens, Arno PM ; de Jongh, Petra E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_16600774963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Confining</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Nanostructure</topic><topic>Phase transformations</topic><topic>Porosity</topic><topic>Silicon dioxide</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanchard, Didier</creatorcontrib><creatorcontrib>Nale, Angeloclaudio</creatorcontrib><creatorcontrib>Sveinbjornsson, Dadi</creatorcontrib><creatorcontrib>Eggenhuisen, Tamara M</creatorcontrib><creatorcontrib>Verkuijlen, Margriet HW</creatorcontrib><creatorcontrib>Vegge, Tejs</creatorcontrib><creatorcontrib>Kentgens, Arno PM</creatorcontrib><creatorcontrib>de Jongh, Petra E</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanchard, Didier</au><au>Nale, Angeloclaudio</au><au>Sveinbjornsson, Dadi</au><au>Eggenhuisen, Tamara M</au><au>Verkuijlen, Margriet HW</au><au>Vegge, Tejs</au><au>Kentgens, Arno PM</au><au>de Jongh, Petra E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoconfined LiBH sub(4) as a Fast Lithium Ion Conductor</atitle><jtitle>Advanced functional materials</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>25</volume><issue>2</issue><spage>184</spage><epage>192</epage><pages>184-192</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid-state batteries. LiBH sub(4) is a promising solid electrolyte for Li-ion batteries. It displays high lithium mobility, although only above 110 degree C at which a transition to a high temperature hexagonal structure occurs. Herein, it is shown that confining LiBH sub(4) in the pores of ordered mesoporous silica scaffolds leads to high Li super(+) conductivity (0.1 mS cm super(-1)) at room temperature. This is a surprisingly high value, especially given that the nanocomposites comprise 42 vol% of SiO sub(2). Solid state super(7)Li NMR confirmed that the high conductivity can be attributed to a very high Li super(+) mobility in the solid phase at room temperature. Confinement of LiBH sub(4) in the pores leads also to a lower solid-solid phase transition temperature than for bulk LiBH sub(4). However, the high ionic mobility is associated with a fraction of the confined borohydride that shows no phase transition, and most likely located close to the interface with the SiO sub(2) pore walls. These results point to a new strategy to design low-temperature ion conducting solids for application in all solid-state lithium ion batteries, which could enable safe use of Li-metal anodes. Confining LiBH sub(4) inside nanopores of mesoporous silica results in stable and high Li super(+) mobilities persisting to room temperature. The mobility is associated with a LiBH sub(4) phase that does not undergo a structural phase transition, a phase probably located within 1.0 nanometer of the pore walls. This presents a new strategy to design efficient electrolytes for all solid-state rechargeable lithium batteries.</abstract><doi>10.1002/adfm.201402538</doi></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2015-01, Vol.25 (2), p.184-192
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1660077496
source Access via Wiley Online Library
subjects Confining
Lithium
Lithium batteries
Nanostructure
Phase transformations
Porosity
Silicon dioxide
Walls
title Nanoconfined LiBH sub(4) as a Fast Lithium Ion Conductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoconfined%20LiBH%20sub(4)%20as%20a%20Fast%20Lithium%20Ion%20Conductor&rft.jtitle=Advanced%20functional%20materials&rft.au=Blanchard,%20Didier&rft.date=2015-01-01&rft.volume=25&rft.issue=2&rft.spage=184&rft.epage=192&rft.pages=184-192&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201402538&rft_dat=%3Cproquest%3E1660077496%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660077496&rft_id=info:pmid/&rfr_iscdi=true