Outlier detection based on transitive closure

Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2015-01, Vol.19 (1), p.145-160
Hauptverfasser: Wan, Jiaqiang, Zhu, Qingsheng, Lei, Dajiang, Lu, Jiaxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 1
container_start_page 145
container_title Intelligent data analysis
container_volume 19
creator Wan, Jiaqiang
Zhu, Qingsheng
Lei, Dajiang
Lu, Jiaxi
description Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, local difference cannot represent true outlying-ness. On the basis of this conclusion, we propose a new outlying-ness measure that reflects the connectivity of any object to the main body of a data set. For any object p, the outlying-ness is denoted by the connectivity from the k-th most similar neighbor to p. The proposed measure is applicable to arbitrary-density and arbitrarily-shaped data. It is uninfluenced by unsuitable reference objects and effectively identifies outlying clusters without the need for clustering algorithms and additional parameters.
doi_str_mv 10.3233/IDA-140701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660073036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660073036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-4791ead7134529b6986debd4167b8a61fcd5be20558c3419690504d486dc2c1d3</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoMoOKcXf0GPIkS_L0mT9jim08FgFwVvIU2-QqVbZ5IK_nsr9fQ-h4f38DB2i_AghZSP26cVRwUG8IwtsDTIFYrqfGKoKq60-bhkVyl9AoASoBaM78fcdxSLQJl87oZj0bhEoZggR3dMXe6-qfD9kMZI1-yidX2im_9dsvfN89v6le_2L9v1ase90CpzZWokFwxKVYq60XWlAzVBoTZN5TS2PpQNCSjLykuFta6hBBXUpHnhMcglu5t_T3H4Gille-iSp753RxrGZFFrACNB6km9n1Ufh5QitfYUu4OLPxbB_jWxUxM7N5G_TOBSPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660073036</pqid></control><display><type>article</type><title>Outlier detection based on transitive closure</title><source>EBSCOhost Business Source Complete</source><creator>Wan, Jiaqiang ; Zhu, Qingsheng ; Lei, Dajiang ; Lu, Jiaxi</creator><creatorcontrib>Wan, Jiaqiang ; Zhu, Qingsheng ; Lei, Dajiang ; Lu, Jiaxi</creatorcontrib><description>Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, local difference cannot represent true outlying-ness. On the basis of this conclusion, we propose a new outlying-ness measure that reflects the connectivity of any object to the main body of a data set. For any object p, the outlying-ness is denoted by the connectivity from the k-th most similar neighbor to p. The proposed measure is applicable to arbitrary-density and arbitrarily-shaped data. It is uninfluenced by unsuitable reference objects and effectively identifies outlying clusters without the need for clustering algorithms and additional parameters.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-140701</identifier><language>eng</language><subject>Algorithms ; Closures ; Clustering ; Clusters ; Data mining ; Data processing ; Tasks</subject><ispartof>Intelligent data analysis, 2015-01, Vol.19 (1), p.145-160</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-4791ead7134529b6986debd4167b8a61fcd5be20558c3419690504d486dc2c1d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wan, Jiaqiang</creatorcontrib><creatorcontrib>Zhu, Qingsheng</creatorcontrib><creatorcontrib>Lei, Dajiang</creatorcontrib><creatorcontrib>Lu, Jiaxi</creatorcontrib><title>Outlier detection based on transitive closure</title><title>Intelligent data analysis</title><description>Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, local difference cannot represent true outlying-ness. On the basis of this conclusion, we propose a new outlying-ness measure that reflects the connectivity of any object to the main body of a data set. For any object p, the outlying-ness is denoted by the connectivity from the k-th most similar neighbor to p. The proposed measure is applicable to arbitrary-density and arbitrarily-shaped data. It is uninfluenced by unsuitable reference objects and effectively identifies outlying clusters without the need for clustering algorithms and additional parameters.</description><subject>Algorithms</subject><subject>Closures</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Tasks</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEFLwzAYhoMoOKcXf0GPIkS_L0mT9jim08FgFwVvIU2-QqVbZ5IK_nsr9fQ-h4f38DB2i_AghZSP26cVRwUG8IwtsDTIFYrqfGKoKq60-bhkVyl9AoASoBaM78fcdxSLQJl87oZj0bhEoZggR3dMXe6-qfD9kMZI1-yidX2im_9dsvfN89v6le_2L9v1ase90CpzZWokFwxKVYq60XWlAzVBoTZN5TS2PpQNCSjLykuFta6hBBXUpHnhMcglu5t_T3H4Gille-iSp753RxrGZFFrACNB6km9n1Ufh5QitfYUu4OLPxbB_jWxUxM7N5G_TOBSPQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wan, Jiaqiang</creator><creator>Zhu, Qingsheng</creator><creator>Lei, Dajiang</creator><creator>Lu, Jiaxi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>Outlier detection based on transitive closure</title><author>Wan, Jiaqiang ; Zhu, Qingsheng ; Lei, Dajiang ; Lu, Jiaxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-4791ead7134529b6986debd4167b8a61fcd5be20558c3419690504d486dc2c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Closures</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Jiaqiang</creatorcontrib><creatorcontrib>Zhu, Qingsheng</creatorcontrib><creatorcontrib>Lei, Dajiang</creatorcontrib><creatorcontrib>Lu, Jiaxi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Jiaqiang</au><au>Zhu, Qingsheng</au><au>Lei, Dajiang</au><au>Lu, Jiaxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outlier detection based on transitive closure</atitle><jtitle>Intelligent data analysis</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>145</spage><epage>160</epage><pages>145-160</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, local difference cannot represent true outlying-ness. On the basis of this conclusion, we propose a new outlying-ness measure that reflects the connectivity of any object to the main body of a data set. For any object p, the outlying-ness is denoted by the connectivity from the k-th most similar neighbor to p. The proposed measure is applicable to arbitrary-density and arbitrarily-shaped data. It is uninfluenced by unsuitable reference objects and effectively identifies outlying clusters without the need for clustering algorithms and additional parameters.</abstract><doi>10.3233/IDA-140701</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1088-467X
ispartof Intelligent data analysis, 2015-01, Vol.19 (1), p.145-160
issn 1088-467X
1571-4128
language eng
recordid cdi_proquest_miscellaneous_1660073036
source EBSCOhost Business Source Complete
subjects Algorithms
Closures
Clustering
Clusters
Data mining
Data processing
Tasks
title Outlier detection based on transitive closure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outlier%20detection%20based%20on%20transitive%20closure&rft.jtitle=Intelligent%20data%20analysis&rft.au=Wan,%20Jiaqiang&rft.date=2015-01-01&rft.volume=19&rft.issue=1&rft.spage=145&rft.epage=160&rft.pages=145-160&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-140701&rft_dat=%3Cproquest_cross%3E1660073036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660073036&rft_id=info:pmid/&rfr_iscdi=true