Outlier detection based on transitive closure
Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, loc...
Gespeichert in:
Veröffentlicht in: | Intelligent data analysis 2015-01, Vol.19 (1), p.145-160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 1 |
container_start_page | 145 |
container_title | Intelligent data analysis |
container_volume | 19 |
creator | Wan, Jiaqiang Zhu, Qingsheng Lei, Dajiang Lu, Jiaxi |
description | Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, local difference cannot represent true outlying-ness. On the basis of this conclusion, we propose a new outlying-ness measure that reflects the connectivity of any object to the main body of a data set. For any object p, the outlying-ness is denoted by the connectivity from the k-th most similar neighbor to p. The proposed measure is applicable to arbitrary-density and arbitrarily-shaped data. It is uninfluenced by unsuitable reference objects and effectively identifies outlying clusters without the need for clustering algorithms and additional parameters. |
doi_str_mv | 10.3233/IDA-140701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660073036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660073036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-4791ead7134529b6986debd4167b8a61fcd5be20558c3419690504d486dc2c1d3</originalsourceid><addsrcrecordid>eNotkEFLwzAYhoMoOKcXf0GPIkS_L0mT9jim08FgFwVvIU2-QqVbZ5IK_nsr9fQ-h4f38DB2i_AghZSP26cVRwUG8IwtsDTIFYrqfGKoKq60-bhkVyl9AoASoBaM78fcdxSLQJl87oZj0bhEoZggR3dMXe6-qfD9kMZI1-yidX2im_9dsvfN89v6le_2L9v1ase90CpzZWokFwxKVYq60XWlAzVBoTZN5TS2PpQNCSjLykuFta6hBBXUpHnhMcglu5t_T3H4Gille-iSp753RxrGZFFrACNB6km9n1Ufh5QitfYUu4OLPxbB_jWxUxM7N5G_TOBSPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660073036</pqid></control><display><type>article</type><title>Outlier detection based on transitive closure</title><source>EBSCOhost Business Source Complete</source><creator>Wan, Jiaqiang ; Zhu, Qingsheng ; Lei, Dajiang ; Lu, Jiaxi</creator><creatorcontrib>Wan, Jiaqiang ; Zhu, Qingsheng ; Lei, Dajiang ; Lu, Jiaxi</creatorcontrib><description>Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, local difference cannot represent true outlying-ness. On the basis of this conclusion, we propose a new outlying-ness measure that reflects the connectivity of any object to the main body of a data set. For any object p, the outlying-ness is denoted by the connectivity from the k-th most similar neighbor to p. The proposed measure is applicable to arbitrary-density and arbitrarily-shaped data. It is uninfluenced by unsuitable reference objects and effectively identifies outlying clusters without the need for clustering algorithms and additional parameters.</description><identifier>ISSN: 1088-467X</identifier><identifier>EISSN: 1571-4128</identifier><identifier>DOI: 10.3233/IDA-140701</identifier><language>eng</language><subject>Algorithms ; Closures ; Clustering ; Clusters ; Data mining ; Data processing ; Tasks</subject><ispartof>Intelligent data analysis, 2015-01, Vol.19 (1), p.145-160</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-4791ead7134529b6986debd4167b8a61fcd5be20558c3419690504d486dc2c1d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wan, Jiaqiang</creatorcontrib><creatorcontrib>Zhu, Qingsheng</creatorcontrib><creatorcontrib>Lei, Dajiang</creatorcontrib><creatorcontrib>Lu, Jiaxi</creatorcontrib><title>Outlier detection based on transitive closure</title><title>Intelligent data analysis</title><description>Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, local difference cannot represent true outlying-ness. On the basis of this conclusion, we propose a new outlying-ness measure that reflects the connectivity of any object to the main body of a data set. For any object p, the outlying-ness is denoted by the connectivity from the k-th most similar neighbor to p. The proposed measure is applicable to arbitrary-density and arbitrarily-shaped data. It is uninfluenced by unsuitable reference objects and effectively identifies outlying clusters without the need for clustering algorithms and additional parameters.</description><subject>Algorithms</subject><subject>Closures</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Tasks</subject><issn>1088-467X</issn><issn>1571-4128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkEFLwzAYhoMoOKcXf0GPIkS_L0mT9jim08FgFwVvIU2-QqVbZ5IK_nsr9fQ-h4f38DB2i_AghZSP26cVRwUG8IwtsDTIFYrqfGKoKq60-bhkVyl9AoASoBaM78fcdxSLQJl87oZj0bhEoZggR3dMXe6-qfD9kMZI1-yidX2im_9dsvfN89v6le_2L9v1ase90CpzZWokFwxKVYq60XWlAzVBoTZN5TS2PpQNCSjLykuFta6hBBXUpHnhMcglu5t_T3H4Gille-iSp753RxrGZFFrACNB6km9n1Ufh5QitfYUu4OLPxbB_jWxUxM7N5G_TOBSPQ</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wan, Jiaqiang</creator><creator>Zhu, Qingsheng</creator><creator>Lei, Dajiang</creator><creator>Lu, Jiaxi</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150101</creationdate><title>Outlier detection based on transitive closure</title><author>Wan, Jiaqiang ; Zhu, Qingsheng ; Lei, Dajiang ; Lu, Jiaxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-4791ead7134529b6986debd4167b8a61fcd5be20558c3419690504d486dc2c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Closures</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Jiaqiang</creatorcontrib><creatorcontrib>Zhu, Qingsheng</creatorcontrib><creatorcontrib>Lei, Dajiang</creatorcontrib><creatorcontrib>Lu, Jiaxi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Intelligent data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Jiaqiang</au><au>Zhu, Qingsheng</au><au>Lei, Dajiang</au><au>Lu, Jiaxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outlier detection based on transitive closure</atitle><jtitle>Intelligent data analysis</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>145</spage><epage>160</epage><pages>145-160</pages><issn>1088-467X</issn><eissn>1571-4128</eissn><abstract>Outlier detection is an important task in data mining because outliers may bring either new knowledge or potential threats. Much of recent research has focused on measuring the local difference between an outlier and its nearest neighbors, some of which may be unsuitable reference objects. Thus, local difference cannot represent true outlying-ness. On the basis of this conclusion, we propose a new outlying-ness measure that reflects the connectivity of any object to the main body of a data set. For any object p, the outlying-ness is denoted by the connectivity from the k-th most similar neighbor to p. The proposed measure is applicable to arbitrary-density and arbitrarily-shaped data. It is uninfluenced by unsuitable reference objects and effectively identifies outlying clusters without the need for clustering algorithms and additional parameters.</abstract><doi>10.3233/IDA-140701</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-467X |
ispartof | Intelligent data analysis, 2015-01, Vol.19 (1), p.145-160 |
issn | 1088-467X 1571-4128 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660073036 |
source | EBSCOhost Business Source Complete |
subjects | Algorithms Closures Clustering Clusters Data mining Data processing Tasks |
title | Outlier detection based on transitive closure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outlier%20detection%20based%20on%20transitive%20closure&rft.jtitle=Intelligent%20data%20analysis&rft.au=Wan,%20Jiaqiang&rft.date=2015-01-01&rft.volume=19&rft.issue=1&rft.spage=145&rft.epage=160&rft.pages=145-160&rft.issn=1088-467X&rft.eissn=1571-4128&rft_id=info:doi/10.3233/IDA-140701&rft_dat=%3Cproquest_cross%3E1660073036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660073036&rft_id=info:pmid/&rfr_iscdi=true |