A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator
Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of supercond...
Gespeichert in:
Veröffentlicht in: | Arabian Journal for Science and Engineering 2014-11, Vol.39 (11), p.7957-7965 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7965 |
---|---|
container_issue | 11 |
container_start_page | 7957 |
container_title | Arabian Journal for Science and Engineering |
container_volume | 39 |
creator | Rahim, A. H. M. A. Khan, M. H. |
description | Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of superconducting magnetic energy storage (SMES) system for efficient wind energy transfer as well as dynamic performance improvement is proposed in this article. A radial basis function neural network has been employed to determine the controller parameter values. The nominal weights of the neural network are obtained from training of a large input-output data set generated through an improved swarm optimization procedure. These weights are then updated through a novel method of tracking of system outputs in time domain. Tests carried out with the adaptive controller show that the improved particle swarm-based radial basis network SMES controller delivers wind energy to grid efficiently and at the same time exhibit very good damping profile. |
doi_str_mv | 10.1007/s13369-014-1324-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660072130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660072130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-696c19cf18c2bb076a2b369e8b8b47ffc4a0ad1045ba6566c90e4ea9d3172d0c3</originalsourceid><addsrcrecordid>eNqNkLFOwzAURS0EEqXwAWweWQx-tuMkY6lKQWoBqSDYLMdxqpQ0LnZCRb8eV2VGTHc59-ndg9Al0GugNL0JwLnMCQVBgDNBdkdowCAHIlgGx2gAHHKSUZacorMQVpRKyFI-QO8jvNhqvya3OtgSj0q96eovix9t73UTo9s6_4EX88kCj13bedfgynms8bP1a93atsNzvWxth9_qtsRT21qvO-fP0Umlm2AvfnOIXu8mL-N7MnuaPoxHM2J4Ijoic2kgNxVkhhUFTaVmRRxisyIrRFpVRmiqS6AiKbRMpDQ5tcLqvOSQspIaPkRXh7sb7z57Gzq1roOxTRN_c31QIGX0w4DTf6CCSUhkziIKB9R4F4K3ldr4eq39twKq9sLVQbiKwtVeuNrFDjt0QmTbpfVq5XrfxvF_lH4AlbqCjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642615692</pqid></control><display><type>article</type><title>A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator</title><source>SpringerLink_现刊</source><creator>Rahim, A. H. M. A. ; Khan, M. H.</creator><creatorcontrib>Rahim, A. H. M. A. ; Khan, M. H.</creatorcontrib><description>Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of superconducting magnetic energy storage (SMES) system for efficient wind energy transfer as well as dynamic performance improvement is proposed in this article. A radial basis function neural network has been employed to determine the controller parameter values. The nominal weights of the neural network are obtained from training of a large input-output data set generated through an improved swarm optimization procedure. These weights are then updated through a novel method of tracking of system outputs in time domain. Tests carried out with the adaptive controller show that the improved particle swarm-based radial basis network SMES controller delivers wind energy to grid efficiently and at the same time exhibit very good damping profile.</description><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-014-1324-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control systems ; Dynamical systems ; Dynamics ; Electric potential ; Engineering ; Generators ; Humanities and Social Sciences ; multidisciplinary ; Neural networks ; Permanent magnets ; Research Article - Electrical Engineering ; Science ; Wind energy</subject><ispartof>Arabian Journal for Science and Engineering, 2014-11, Vol.39 (11), p.7957-7965</ispartof><rights>King Fahd University of Petroleum and Minerals 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-696c19cf18c2bb076a2b369e8b8b47ffc4a0ad1045ba6566c90e4ea9d3172d0c3</citedby><cites>FETCH-LOGICAL-c354t-696c19cf18c2bb076a2b369e8b8b47ffc4a0ad1045ba6566c90e4ea9d3172d0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-014-1324-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-014-1324-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rahim, A. H. M. A.</creatorcontrib><creatorcontrib>Khan, M. H.</creatorcontrib><title>A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator</title><title>Arabian Journal for Science and Engineering</title><addtitle>Arab J Sci Eng</addtitle><description>Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of superconducting magnetic energy storage (SMES) system for efficient wind energy transfer as well as dynamic performance improvement is proposed in this article. A radial basis function neural network has been employed to determine the controller parameter values. The nominal weights of the neural network are obtained from training of a large input-output data set generated through an improved swarm optimization procedure. These weights are then updated through a novel method of tracking of system outputs in time domain. Tests carried out with the adaptive controller show that the improved particle swarm-based radial basis network SMES controller delivers wind energy to grid efficiently and at the same time exhibit very good damping profile.</description><subject>Adaptive control systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric potential</subject><subject>Engineering</subject><subject>Generators</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Permanent magnets</subject><subject>Research Article - Electrical Engineering</subject><subject>Science</subject><subject>Wind energy</subject><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAURS0EEqXwAWweWQx-tuMkY6lKQWoBqSDYLMdxqpQ0LnZCRb8eV2VGTHc59-ndg9Al0GugNL0JwLnMCQVBgDNBdkdowCAHIlgGx2gAHHKSUZacorMQVpRKyFI-QO8jvNhqvya3OtgSj0q96eovix9t73UTo9s6_4EX88kCj13bedfgynms8bP1a93atsNzvWxth9_qtsRT21qvO-fP0Umlm2AvfnOIXu8mL-N7MnuaPoxHM2J4Ijoic2kgNxVkhhUFTaVmRRxisyIrRFpVRmiqS6AiKbRMpDQ5tcLqvOSQspIaPkRXh7sb7z57Gzq1roOxTRN_c31QIGX0w4DTf6CCSUhkziIKB9R4F4K3ldr4eq39twKq9sLVQbiKwtVeuNrFDjt0QmTbpfVq5XrfxvF_lH4AlbqCjw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Rahim, A. H. M. A.</creator><creator>Khan, M. H.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141101</creationdate><title>A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator</title><author>Rahim, A. H. M. A. ; Khan, M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-696c19cf18c2bb076a2b369e8b8b47ffc4a0ad1045ba6566c90e4ea9d3172d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive control systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric potential</topic><topic>Engineering</topic><topic>Generators</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Permanent magnets</topic><topic>Research Article - Electrical Engineering</topic><topic>Science</topic><topic>Wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahim, A. H. M. A.</creatorcontrib><creatorcontrib>Khan, M. H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Arabian Journal for Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahim, A. H. M. A.</au><au>Khan, M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator</atitle><jtitle>Arabian Journal for Science and Engineering</jtitle><stitle>Arab J Sci Eng</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>39</volume><issue>11</issue><spage>7957</spage><epage>7965</epage><pages>7957-7965</pages><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of superconducting magnetic energy storage (SMES) system for efficient wind energy transfer as well as dynamic performance improvement is proposed in this article. A radial basis function neural network has been employed to determine the controller parameter values. The nominal weights of the neural network are obtained from training of a large input-output data set generated through an improved swarm optimization procedure. These weights are then updated through a novel method of tracking of system outputs in time domain. Tests carried out with the adaptive controller show that the improved particle swarm-based radial basis network SMES controller delivers wind energy to grid efficiently and at the same time exhibit very good damping profile.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-014-1324-z</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1319-8025 |
ispartof | Arabian Journal for Science and Engineering, 2014-11, Vol.39 (11), p.7957-7965 |
issn | 1319-8025 2191-4281 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660072130 |
source | SpringerLink_现刊 |
subjects | Adaptive control systems Dynamical systems Dynamics Electric potential Engineering Generators Humanities and Social Sciences multidisciplinary Neural networks Permanent magnets Research Article - Electrical Engineering Science Wind energy |
title | A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Swarm-Based%20Adaptive%20Neural%20Network%20SMES%20Control%20for%20a%20Permanent%20Magnet%20Wind%20Generator&rft.jtitle=Arabian%20Journal%20for%20Science%20and%20Engineering&rft.au=Rahim,%20A.%20H.%20M.%20A.&rft.date=2014-11-01&rft.volume=39&rft.issue=11&rft.spage=7957&rft.epage=7965&rft.pages=7957-7965&rft.issn=1319-8025&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-014-1324-z&rft_dat=%3Cproquest_cross%3E1660072130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642615692&rft_id=info:pmid/&rfr_iscdi=true |