A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator

Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of supercond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian Journal for Science and Engineering 2014-11, Vol.39 (11), p.7957-7965
Hauptverfasser: Rahim, A. H. M. A., Khan, M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7965
container_issue 11
container_start_page 7957
container_title Arabian Journal for Science and Engineering
container_volume 39
creator Rahim, A. H. M. A.
Khan, M. H.
description Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of superconducting magnetic energy storage (SMES) system for efficient wind energy transfer as well as dynamic performance improvement is proposed in this article. A radial basis function neural network has been employed to determine the controller parameter values. The nominal weights of the neural network are obtained from training of a large input-output data set generated through an improved swarm optimization procedure. These weights are then updated through a novel method of tracking of system outputs in time domain. Tests carried out with the adaptive controller show that the improved particle swarm-based radial basis network SMES controller delivers wind energy to grid efficiently and at the same time exhibit very good damping profile.
doi_str_mv 10.1007/s13369-014-1324-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660072130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660072130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-696c19cf18c2bb076a2b369e8b8b47ffc4a0ad1045ba6566c90e4ea9d3172d0c3</originalsourceid><addsrcrecordid>eNqNkLFOwzAURS0EEqXwAWweWQx-tuMkY6lKQWoBqSDYLMdxqpQ0LnZCRb8eV2VGTHc59-ndg9Al0GugNL0JwLnMCQVBgDNBdkdowCAHIlgGx2gAHHKSUZacorMQVpRKyFI-QO8jvNhqvya3OtgSj0q96eovix9t73UTo9s6_4EX88kCj13bedfgynms8bP1a93atsNzvWxth9_qtsRT21qvO-fP0Umlm2AvfnOIXu8mL-N7MnuaPoxHM2J4Ijoic2kgNxVkhhUFTaVmRRxisyIrRFpVRmiqS6AiKbRMpDQ5tcLqvOSQspIaPkRXh7sb7z57Gzq1roOxTRN_c31QIGX0w4DTf6CCSUhkziIKB9R4F4K3ldr4eq39twKq9sLVQbiKwtVeuNrFDjt0QmTbpfVq5XrfxvF_lH4AlbqCjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642615692</pqid></control><display><type>article</type><title>A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator</title><source>SpringerLink_现刊</source><creator>Rahim, A. H. M. A. ; Khan, M. H.</creator><creatorcontrib>Rahim, A. H. M. A. ; Khan, M. H.</creatorcontrib><description>Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of superconducting magnetic energy storage (SMES) system for efficient wind energy transfer as well as dynamic performance improvement is proposed in this article. A radial basis function neural network has been employed to determine the controller parameter values. The nominal weights of the neural network are obtained from training of a large input-output data set generated through an improved swarm optimization procedure. These weights are then updated through a novel method of tracking of system outputs in time domain. Tests carried out with the adaptive controller show that the improved particle swarm-based radial basis network SMES controller delivers wind energy to grid efficiently and at the same time exhibit very good damping profile.</description><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-014-1324-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control systems ; Dynamical systems ; Dynamics ; Electric potential ; Engineering ; Generators ; Humanities and Social Sciences ; multidisciplinary ; Neural networks ; Permanent magnets ; Research Article - Electrical Engineering ; Science ; Wind energy</subject><ispartof>Arabian Journal for Science and Engineering, 2014-11, Vol.39 (11), p.7957-7965</ispartof><rights>King Fahd University of Petroleum and Minerals 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-696c19cf18c2bb076a2b369e8b8b47ffc4a0ad1045ba6566c90e4ea9d3172d0c3</citedby><cites>FETCH-LOGICAL-c354t-696c19cf18c2bb076a2b369e8b8b47ffc4a0ad1045ba6566c90e4ea9d3172d0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-014-1324-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-014-1324-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rahim, A. H. M. A.</creatorcontrib><creatorcontrib>Khan, M. H.</creatorcontrib><title>A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator</title><title>Arabian Journal for Science and Engineering</title><addtitle>Arab J Sci Eng</addtitle><description>Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of superconducting magnetic energy storage (SMES) system for efficient wind energy transfer as well as dynamic performance improvement is proposed in this article. A radial basis function neural network has been employed to determine the controller parameter values. The nominal weights of the neural network are obtained from training of a large input-output data set generated through an improved swarm optimization procedure. These weights are then updated through a novel method of tracking of system outputs in time domain. Tests carried out with the adaptive controller show that the improved particle swarm-based radial basis network SMES controller delivers wind energy to grid efficiently and at the same time exhibit very good damping profile.</description><subject>Adaptive control systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electric potential</subject><subject>Engineering</subject><subject>Generators</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Permanent magnets</subject><subject>Research Article - Electrical Engineering</subject><subject>Science</subject><subject>Wind energy</subject><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAURS0EEqXwAWweWQx-tuMkY6lKQWoBqSDYLMdxqpQ0LnZCRb8eV2VGTHc59-ndg9Al0GugNL0JwLnMCQVBgDNBdkdowCAHIlgGx2gAHHKSUZacorMQVpRKyFI-QO8jvNhqvya3OtgSj0q96eovix9t73UTo9s6_4EX88kCj13bedfgynms8bP1a93atsNzvWxth9_qtsRT21qvO-fP0Umlm2AvfnOIXu8mL-N7MnuaPoxHM2J4Ijoic2kgNxVkhhUFTaVmRRxisyIrRFpVRmiqS6AiKbRMpDQ5tcLqvOSQspIaPkRXh7sb7z57Gzq1roOxTRN_c31QIGX0w4DTf6CCSUhkziIKB9R4F4K3ldr4eq39twKq9sLVQbiKwtVeuNrFDjt0QmTbpfVq5XrfxvF_lH4AlbqCjw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Rahim, A. H. M. A.</creator><creator>Khan, M. H.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141101</creationdate><title>A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator</title><author>Rahim, A. H. M. A. ; Khan, M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-696c19cf18c2bb076a2b369e8b8b47ffc4a0ad1045ba6566c90e4ea9d3172d0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive control systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electric potential</topic><topic>Engineering</topic><topic>Generators</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Permanent magnets</topic><topic>Research Article - Electrical Engineering</topic><topic>Science</topic><topic>Wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahim, A. H. M. A.</creatorcontrib><creatorcontrib>Khan, M. H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Arabian Journal for Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahim, A. H. M. A.</au><au>Khan, M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator</atitle><jtitle>Arabian Journal for Science and Engineering</jtitle><stitle>Arab J Sci Eng</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>39</volume><issue>11</issue><spage>7957</spage><epage>7965</epage><pages>7957-7965</pages><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>Permanent magnet synchronous generators are becoming increasingly popular as utility-scale wind generators. While their performances are satisfactorily under normal conditions, they may be degraded under wind gusts as well as in extremely low grid voltage conditions. An adaptive control of superconducting magnetic energy storage (SMES) system for efficient wind energy transfer as well as dynamic performance improvement is proposed in this article. A radial basis function neural network has been employed to determine the controller parameter values. The nominal weights of the neural network are obtained from training of a large input-output data set generated through an improved swarm optimization procedure. These weights are then updated through a novel method of tracking of system outputs in time domain. Tests carried out with the adaptive controller show that the improved particle swarm-based radial basis network SMES controller delivers wind energy to grid efficiently and at the same time exhibit very good damping profile.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-014-1324-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1319-8025
ispartof Arabian Journal for Science and Engineering, 2014-11, Vol.39 (11), p.7957-7965
issn 1319-8025
2191-4281
language eng
recordid cdi_proquest_miscellaneous_1660072130
source SpringerLink_现刊
subjects Adaptive control systems
Dynamical systems
Dynamics
Electric potential
Engineering
Generators
Humanities and Social Sciences
multidisciplinary
Neural networks
Permanent magnets
Research Article - Electrical Engineering
Science
Wind energy
title A Swarm-Based Adaptive Neural Network SMES Control for a Permanent Magnet Wind Generator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Swarm-Based%20Adaptive%20Neural%20Network%20SMES%20Control%20for%20a%20Permanent%20Magnet%20Wind%20Generator&rft.jtitle=Arabian%20Journal%20for%20Science%20and%20Engineering&rft.au=Rahim,%20A.%20H.%20M.%20A.&rft.date=2014-11-01&rft.volume=39&rft.issue=11&rft.spage=7957&rft.epage=7965&rft.pages=7957-7965&rft.issn=1319-8025&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-014-1324-z&rft_dat=%3Cproquest_cross%3E1660072130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642615692&rft_id=info:pmid/&rfr_iscdi=true