Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest

Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large‐scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy‐dominant early succession...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Biogeosciences 2014-12, Vol.119 (12), p.2292-2311
Hauptverfasser: Matheny, Ashley M., Bohrer, Gil, Vogel, Christoph S., Morin, Timothy H., He, Lingli, Frasson, Renato Prata de Moraes, Mirfenderesgi, Golnazalsadat, Schäfer, Karina V. R., Gough, Christopher M., Ivanov, Valeriy Y., Curtis, Peter S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2311
container_issue 12
container_start_page 2292
container_title Journal of geophysical research. Biogeosciences
container_volume 119
creator Matheny, Ashley M.
Bohrer, Gil
Vogel, Christoph S.
Morin, Timothy H.
He, Lingli
Frasson, Renato Prata de Moraes
Mirfenderesgi, Golnazalsadat
Schäfer, Karina V. R.
Gough, Christopher M.
Ivanov, Valeriy Y.
Curtis, Peter S.
description Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large‐scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy‐dominant early successional trees to simulate an accelerated age‐related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance‐induced changes to plot level and species‐specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However, species‐specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman‐Monteith model for LE to demonstrate that these species‐specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration. Key Points Plot level scaling of evaporation from sap flux evaluated with eddy flux Disturbance changes intradaily transpiration dynamics Hydraulic strategy causes species‐specific transpiration differences
doi_str_mv 10.1002/2014JG002804
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660071114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1654688996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7685-83315dc4c6de643ad1d8a47a6564c75cde4214be7c10027e00796c9c03596c2d3</originalsourceid><addsrcrecordid>eNqNkU1LJDEQhhtxQVFv_oCAFw-25qvzcVTR3hVxYXX1GDJJDUZnkjbpYfTfb4YREQ-yubxF6nkrVZWm2Sf4mGBMTygm_KqvkcJ8o9mmROhWaUE2P-KObTV7pTzhelS9ImS7mdwO4AKUtqx0Ghwas41lCNmOIUWUoQwpFihoTCjEEfIcfLAjIB_KuMgTGx3UBLIopjw-Qo7o0Wa_TMmjaar2cbf5MbWzAnvvutP8vby4O__ZXv_uf52fXrdOCtW1ijHSeced8CA4s554Zbm0ohPcyc554JTwCUi3GlcCxlILpx1mXVXq2U5zuK475PSyqA-beSgOZjMbIS2KIUJUDyGE_wfacaGU1qKiB1_Qp7TIsQ5SKS6p0IKySh2tKZdTKRmmZshhbvObIdis-jWfv6fibI0vwwzevmXNVf-np7juprratatuHl4_XDY_GyGZ7MzDTW_Uvdb92R01t-wf7NifXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647269623</pqid></control><display><type>article</type><title>Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Matheny, Ashley M. ; Bohrer, Gil ; Vogel, Christoph S. ; Morin, Timothy H. ; He, Lingli ; Frasson, Renato Prata de Moraes ; Mirfenderesgi, Golnazalsadat ; Schäfer, Karina V. R. ; Gough, Christopher M. ; Ivanov, Valeriy Y. ; Curtis, Peter S.</creator><creatorcontrib>Matheny, Ashley M. ; Bohrer, Gil ; Vogel, Christoph S. ; Morin, Timothy H. ; He, Lingli ; Frasson, Renato Prata de Moraes ; Mirfenderesgi, Golnazalsadat ; Schäfer, Karina V. R. ; Gough, Christopher M. ; Ivanov, Valeriy Y. ; Curtis, Peter S.</creatorcontrib><description>Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large‐scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy‐dominant early successional trees to simulate an accelerated age‐related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance‐induced changes to plot level and species‐specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However, species‐specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman‐Monteith model for LE to demonstrate that these species‐specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration. Key Points Plot level scaling of evaporation from sap flux evaluated with eddy flux Disturbance changes intradaily transpiration dynamics Hydraulic strategy causes species‐specific transpiration differences</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1002/2014JG002804</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Birch trees ; Conductance ; Disturbance ; Disturbances ; Ecological succession ; Evaporation ; Fluctuations ; Flux ; Forests ; Herbivores ; Hydraulics ; Hysteresis ; isohydric/anisohydric ; Mathematical models ; Microclimate ; sap flux ; Stomatal conductance ; Transpiration ; Vapor pressure</subject><ispartof>Journal of geophysical research. Biogeosciences, 2014-12, Vol.119 (12), p.2292-2311</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7685-83315dc4c6de643ad1d8a47a6564c75cde4214be7c10027e00796c9c03596c2d3</citedby><cites>FETCH-LOGICAL-c7685-83315dc4c6de643ad1d8a47a6564c75cde4214be7c10027e00796c9c03596c2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JG002804$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JG002804$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Matheny, Ashley M.</creatorcontrib><creatorcontrib>Bohrer, Gil</creatorcontrib><creatorcontrib>Vogel, Christoph S.</creatorcontrib><creatorcontrib>Morin, Timothy H.</creatorcontrib><creatorcontrib>He, Lingli</creatorcontrib><creatorcontrib>Frasson, Renato Prata de Moraes</creatorcontrib><creatorcontrib>Mirfenderesgi, Golnazalsadat</creatorcontrib><creatorcontrib>Schäfer, Karina V. R.</creatorcontrib><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Ivanov, Valeriy Y.</creatorcontrib><creatorcontrib>Curtis, Peter S.</creatorcontrib><title>Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest</title><title>Journal of geophysical research. Biogeosciences</title><addtitle>J. Geophys. Res. Biogeosci</addtitle><description>Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large‐scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy‐dominant early successional trees to simulate an accelerated age‐related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance‐induced changes to plot level and species‐specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However, species‐specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman‐Monteith model for LE to demonstrate that these species‐specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration. Key Points Plot level scaling of evaporation from sap flux evaluated with eddy flux Disturbance changes intradaily transpiration dynamics Hydraulic strategy causes species‐specific transpiration differences</description><subject>Birch trees</subject><subject>Conductance</subject><subject>Disturbance</subject><subject>Disturbances</subject><subject>Ecological succession</subject><subject>Evaporation</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Forests</subject><subject>Herbivores</subject><subject>Hydraulics</subject><subject>Hysteresis</subject><subject>isohydric/anisohydric</subject><subject>Mathematical models</subject><subject>Microclimate</subject><subject>sap flux</subject><subject>Stomatal conductance</subject><subject>Transpiration</subject><subject>Vapor pressure</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LJDEQhhtxQVFv_oCAFw-25qvzcVTR3hVxYXX1GDJJDUZnkjbpYfTfb4YREQ-yubxF6nkrVZWm2Sf4mGBMTygm_KqvkcJ8o9mmROhWaUE2P-KObTV7pTzhelS9ImS7mdwO4AKUtqx0Ghwas41lCNmOIUWUoQwpFihoTCjEEfIcfLAjIB_KuMgTGx3UBLIopjw-Qo7o0Wa_TMmjaar2cbf5MbWzAnvvutP8vby4O__ZXv_uf52fXrdOCtW1ijHSeced8CA4s554Zbm0ohPcyc554JTwCUi3GlcCxlILpx1mXVXq2U5zuK475PSyqA-beSgOZjMbIS2KIUJUDyGE_wfacaGU1qKiB1_Qp7TIsQ5SKS6p0IKySh2tKZdTKRmmZshhbvObIdis-jWfv6fibI0vwwzevmXNVf-np7juprratatuHl4_XDY_GyGZ7MzDTW_Uvdb92R01t-wf7NifXA</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Matheny, Ashley M.</creator><creator>Bohrer, Gil</creator><creator>Vogel, Christoph S.</creator><creator>Morin, Timothy H.</creator><creator>He, Lingli</creator><creator>Frasson, Renato Prata de Moraes</creator><creator>Mirfenderesgi, Golnazalsadat</creator><creator>Schäfer, Karina V. R.</creator><creator>Gough, Christopher M.</creator><creator>Ivanov, Valeriy Y.</creator><creator>Curtis, Peter S.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201412</creationdate><title>Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest</title><author>Matheny, Ashley M. ; Bohrer, Gil ; Vogel, Christoph S. ; Morin, Timothy H. ; He, Lingli ; Frasson, Renato Prata de Moraes ; Mirfenderesgi, Golnazalsadat ; Schäfer, Karina V. R. ; Gough, Christopher M. ; Ivanov, Valeriy Y. ; Curtis, Peter S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7685-83315dc4c6de643ad1d8a47a6564c75cde4214be7c10027e00796c9c03596c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Birch trees</topic><topic>Conductance</topic><topic>Disturbance</topic><topic>Disturbances</topic><topic>Ecological succession</topic><topic>Evaporation</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Forests</topic><topic>Herbivores</topic><topic>Hydraulics</topic><topic>Hysteresis</topic><topic>isohydric/anisohydric</topic><topic>Mathematical models</topic><topic>Microclimate</topic><topic>sap flux</topic><topic>Stomatal conductance</topic><topic>Transpiration</topic><topic>Vapor pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matheny, Ashley M.</creatorcontrib><creatorcontrib>Bohrer, Gil</creatorcontrib><creatorcontrib>Vogel, Christoph S.</creatorcontrib><creatorcontrib>Morin, Timothy H.</creatorcontrib><creatorcontrib>He, Lingli</creatorcontrib><creatorcontrib>Frasson, Renato Prata de Moraes</creatorcontrib><creatorcontrib>Mirfenderesgi, Golnazalsadat</creatorcontrib><creatorcontrib>Schäfer, Karina V. R.</creatorcontrib><creatorcontrib>Gough, Christopher M.</creatorcontrib><creatorcontrib>Ivanov, Valeriy Y.</creatorcontrib><creatorcontrib>Curtis, Peter S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matheny, Ashley M.</au><au>Bohrer, Gil</au><au>Vogel, Christoph S.</au><au>Morin, Timothy H.</au><au>He, Lingli</au><au>Frasson, Renato Prata de Moraes</au><au>Mirfenderesgi, Golnazalsadat</au><au>Schäfer, Karina V. R.</au><au>Gough, Christopher M.</au><au>Ivanov, Valeriy Y.</au><au>Curtis, Peter S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><addtitle>J. Geophys. Res. Biogeosci</addtitle><date>2014-12</date><risdate>2014</risdate><volume>119</volume><issue>12</issue><spage>2292</spage><epage>2311</epage><pages>2292-2311</pages><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>Intermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large‐scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy‐dominant early successional trees to simulate an accelerated age‐related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance‐induced changes to plot level and species‐specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However, species‐specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman‐Monteith model for LE to demonstrate that these species‐specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration. Key Points Plot level scaling of evaporation from sap flux evaluated with eddy flux Disturbance changes intradaily transpiration dynamics Hydraulic strategy causes species‐specific transpiration differences</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JG002804</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-8953
ispartof Journal of geophysical research. Biogeosciences, 2014-12, Vol.119 (12), p.2292-2311
issn 2169-8953
2169-8961
language eng
recordid cdi_proquest_miscellaneous_1660071114
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Birch trees
Conductance
Disturbance
Disturbances
Ecological succession
Evaporation
Fluctuations
Flux
Forests
Herbivores
Hydraulics
Hysteresis
isohydric/anisohydric
Mathematical models
Microclimate
sap flux
Stomatal conductance
Transpiration
Vapor pressure
title Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Species-specific%20transpiration%20responses%20to%20intermediate%20disturbance%20in%20a%20northern%20hardwood%20forest&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=Matheny,%20Ashley%20M.&rft.date=2014-12&rft.volume=119&rft.issue=12&rft.spage=2292&rft.epage=2311&rft.pages=2292-2311&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1002/2014JG002804&rft_dat=%3Cproquest_cross%3E1654688996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647269623&rft_id=info:pmid/&rfr_iscdi=true