A wind energy generator for smart grid applications using wireless-coded neuro-fuzzy power control

Wind energy is the major driver to obtain an optimized and efficient use of renewable energy in smart grids. To provide balanced supply, demand, and storage of energy in a much more efficient manner than is done today, smart grids require the employment of an advanced communication infrastructure as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2014-12, Vol.68 (12), p.2112-2123
Hauptverfasser: Capovilla, C.E., Casella, I.R.S., Sguarezi Filho, A.J., Azcue-Puma, J.L., Jacomini, R.V., Ruppert, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wind energy is the major driver to obtain an optimized and efficient use of renewable energy in smart grids. To provide balanced supply, demand, and storage of energy in a much more efficient manner than is done today, smart grids require the employment of an advanced communication infrastructure associated to a robust power control and real-time monitoring systems. Towards this objective, we present a wireless-coded power control scheme for doubly fed induction generators operating at variable speed. The proposed system employs adaptive neuro-fuzzy control, quaternary phase shift-keying modulation, and low-density parity check coding techniques to improve the system robustness and reliability in different propagation conditions for remotely transmitting the power control references from the control center to a given aerogenerator.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2013.06.030