A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network

•A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality caut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine pollution bulletin 2014-06, Vol.83 (1), p.107-115
Hauptverfasser: Nojavan A., Farnaz, Qian, Song S., Paerl, Hans W., Reckhow, Kenneth H., Albright, Elizabeth A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 1
container_start_page 107
container_title Marine pollution bulletin
container_volume 83
creator Nojavan A., Farnaz
Qian, Song S.
Paerl, Hans W.
Reckhow, Kenneth H.
Albright, Elizabeth A.
description •A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality cautions future management actions. The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions.
doi_str_mv 10.1016/j.marpolbul.2014.04.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660069269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X14002148</els_id><sourcerecordid>1535624401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d3bf2563c181ff48a8d238743c9231d7066fc2ace9f11bf26700289a4399a67a3</originalsourceid><addsrcrecordid>eNqNkd1rFDEQwIMo9qz-C5oXwZc987XJ5vEs9QNKC0XBt5BNJm3Ovc2Z7Lbcf2_OO9vHCgNhyG9mkvkh9I6SJSVUflwvNzZv09DPw5IRKpakBqXP0IJ2SjecS_4cLQhhbcOZ_HmCXpWyJoQopuhLdMJERwVr2QKtV7hMs9_hFLAdp9uctukGxuhq5rEb4sZONfGxUrm3o4M9Od0CvoR7fB3vIOPzemfzDs8ljjfY4k92ByXaEfcwRAh4hOk-5V-v0YtghwJvjucp-vH5_PvZ1-bi6su3s9VF44RUU-N5H1gruaMdDUF0tvOMd0pwpxmnXhEpg2PWgQ6UVlSq-s1OW8G1tlJZfoo-HPpuc_o9Q5nMJhYHw2BHSHMxVEpCpGZS_wfKlG4FF-pptOWtZEIQWlF1QF1OpWQIZpvrHvPOUGL2-szaPOgze32G1KD7yrfHIXO_Af9Q989XBd4fAVucHUKuRmJ55Lq2kn8brQ4c1EXfRcimuAjVno8Z3GR8ik8-5g-gUbwX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535624401</pqid></control><display><type>article</type><title>A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Nojavan A., Farnaz ; Qian, Song S. ; Paerl, Hans W. ; Reckhow, Kenneth H. ; Albright, Elizabeth A.</creator><creatorcontrib>Nojavan A., Farnaz ; Qian, Song S. ; Paerl, Hans W. ; Reckhow, Kenneth H. ; Albright, Elizabeth A.</creatorcontrib><description>•A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality cautions future management actions. The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2014.04.011</identifier><identifier>PMID: 24814252</identifier><identifier>CODEN: MPNBAZ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Applied ecology ; Bayes Theorem ; Bayesian analysis ; Bayesian belief network ; Belief networks ; Biological and medical sciences ; Brackish ; Brackish water ecosystems ; Climate ; Climate Change ; Ecosystem ; Ecotoxicology, biological effects of pollution ; Estuaries ; Estuarine environments ; Estuarine eutrophication ; Eutrophication ; Fresh water ecosystems ; Fundamental and applied biological sciences. Psychology ; Harmful algal blooms ; Hypoxia ; Indicators ; Management ; Marine ; Marine and brackish environment ; Models, Theoretical ; North Carolina ; Nutrients ; Rivers ; Sea water ecosystems ; Synecology ; Water pollution ; Water Quality</subject><ispartof>Marine pollution bulletin, 2014-06, Vol.83 (1), p.107-115</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d3bf2563c181ff48a8d238743c9231d7066fc2ace9f11bf26700289a4399a67a3</citedby><cites>FETCH-LOGICAL-c467t-d3bf2563c181ff48a8d238743c9231d7066fc2ace9f11bf26700289a4399a67a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marpolbul.2014.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28548111$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24814252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nojavan A., Farnaz</creatorcontrib><creatorcontrib>Qian, Song S.</creatorcontrib><creatorcontrib>Paerl, Hans W.</creatorcontrib><creatorcontrib>Reckhow, Kenneth H.</creatorcontrib><creatorcontrib>Albright, Elizabeth A.</creatorcontrib><title>A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network</title><title>Marine pollution bulletin</title><addtitle>Mar Pollut Bull</addtitle><description>•A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality cautions future management actions. The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian belief network</subject><subject>Belief networks</subject><subject>Biological and medical sciences</subject><subject>Brackish</subject><subject>Brackish water ecosystems</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Ecosystem</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Estuaries</subject><subject>Estuarine environments</subject><subject>Estuarine eutrophication</subject><subject>Eutrophication</subject><subject>Fresh water ecosystems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Harmful algal blooms</subject><subject>Hypoxia</subject><subject>Indicators</subject><subject>Management</subject><subject>Marine</subject><subject>Marine and brackish environment</subject><subject>Models, Theoretical</subject><subject>North Carolina</subject><subject>Nutrients</subject><subject>Rivers</subject><subject>Sea water ecosystems</subject><subject>Synecology</subject><subject>Water pollution</subject><subject>Water Quality</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkd1rFDEQwIMo9qz-C5oXwZc987XJ5vEs9QNKC0XBt5BNJm3Ovc2Z7Lbcf2_OO9vHCgNhyG9mkvkh9I6SJSVUflwvNzZv09DPw5IRKpakBqXP0IJ2SjecS_4cLQhhbcOZ_HmCXpWyJoQopuhLdMJERwVr2QKtV7hMs9_hFLAdp9uctukGxuhq5rEb4sZONfGxUrm3o4M9Od0CvoR7fB3vIOPzemfzDs8ljjfY4k92ByXaEfcwRAh4hOk-5V-v0YtghwJvjucp-vH5_PvZ1-bi6su3s9VF44RUU-N5H1gruaMdDUF0tvOMd0pwpxmnXhEpg2PWgQ6UVlSq-s1OW8G1tlJZfoo-HPpuc_o9Q5nMJhYHw2BHSHMxVEpCpGZS_wfKlG4FF-pptOWtZEIQWlF1QF1OpWQIZpvrHvPOUGL2-szaPOgze32G1KD7yrfHIXO_Af9Q989XBd4fAVucHUKuRmJ55Lq2kn8brQ4c1EXfRcimuAjVno8Z3GR8ik8-5g-gUbwX</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Nojavan A., Farnaz</creator><creator>Qian, Song S.</creator><creator>Paerl, Hans W.</creator><creator>Reckhow, Kenneth H.</creator><creator>Albright, Elizabeth A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140615</creationdate><title>A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network</title><author>Nojavan A., Farnaz ; Qian, Song S. ; Paerl, Hans W. ; Reckhow, Kenneth H. ; Albright, Elizabeth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d3bf2563c181ff48a8d238743c9231d7066fc2ace9f11bf26700289a4399a67a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian belief network</topic><topic>Belief networks</topic><topic>Biological and medical sciences</topic><topic>Brackish</topic><topic>Brackish water ecosystems</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Ecosystem</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Estuaries</topic><topic>Estuarine environments</topic><topic>Estuarine eutrophication</topic><topic>Eutrophication</topic><topic>Fresh water ecosystems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Harmful algal blooms</topic><topic>Hypoxia</topic><topic>Indicators</topic><topic>Management</topic><topic>Marine</topic><topic>Marine and brackish environment</topic><topic>Models, Theoretical</topic><topic>North Carolina</topic><topic>Nutrients</topic><topic>Rivers</topic><topic>Sea water ecosystems</topic><topic>Synecology</topic><topic>Water pollution</topic><topic>Water Quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nojavan A., Farnaz</creatorcontrib><creatorcontrib>Qian, Song S.</creatorcontrib><creatorcontrib>Paerl, Hans W.</creatorcontrib><creatorcontrib>Reckhow, Kenneth H.</creatorcontrib><creatorcontrib>Albright, Elizabeth A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nojavan A., Farnaz</au><au>Qian, Song S.</au><au>Paerl, Hans W.</au><au>Reckhow, Kenneth H.</au><au>Albright, Elizabeth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network</atitle><jtitle>Marine pollution bulletin</jtitle><addtitle>Mar Pollut Bull</addtitle><date>2014-06-15</date><risdate>2014</risdate><volume>83</volume><issue>1</issue><spage>107</spage><epage>115</epage><pages>107-115</pages><issn>0025-326X</issn><eissn>1879-3363</eissn><coden>MPNBAZ</coden><abstract>•A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality cautions future management actions. The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24814252</pmid><doi>10.1016/j.marpolbul.2014.04.011</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-326X
ispartof Marine pollution bulletin, 2014-06, Vol.83 (1), p.107-115
issn 0025-326X
1879-3363
language eng
recordid cdi_proquest_miscellaneous_1660069269
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animal and plant ecology
Animal, plant and microbial ecology
Applied ecology
Bayes Theorem
Bayesian analysis
Bayesian belief network
Belief networks
Biological and medical sciences
Brackish
Brackish water ecosystems
Climate
Climate Change
Ecosystem
Ecotoxicology, biological effects of pollution
Estuaries
Estuarine environments
Estuarine eutrophication
Eutrophication
Fresh water ecosystems
Fundamental and applied biological sciences. Psychology
Harmful algal blooms
Hypoxia
Indicators
Management
Marine
Marine and brackish environment
Models, Theoretical
North Carolina
Nutrients
Rivers
Sea water ecosystems
Synecology
Water pollution
Water Quality
title A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20of%20anthropogenic%20and%20climatic%20disturbance%20of%20the%20New%20River%20Estuary%20using%20a%20Bayesian%20belief%20network&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Nojavan%20A.,%20Farnaz&rft.date=2014-06-15&rft.volume=83&rft.issue=1&rft.spage=107&rft.epage=115&rft.pages=107-115&rft.issn=0025-326X&rft.eissn=1879-3363&rft.coden=MPNBAZ&rft_id=info:doi/10.1016/j.marpolbul.2014.04.011&rft_dat=%3Cproquest_cross%3E1535624401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535624401&rft_id=info:pmid/24814252&rft_els_id=S0025326X14002148&rfr_iscdi=true