A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network
•A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality caut...
Gespeichert in:
Veröffentlicht in: | Marine pollution bulletin 2014-06, Vol.83 (1), p.107-115 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | Marine pollution bulletin |
container_volume | 83 |
creator | Nojavan A., Farnaz Qian, Song S. Paerl, Hans W. Reckhow, Kenneth H. Albright, Elizabeth A. |
description | •A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality cautions future management actions.
The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions. |
doi_str_mv | 10.1016/j.marpolbul.2014.04.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660069269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X14002148</els_id><sourcerecordid>1535624401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d3bf2563c181ff48a8d238743c9231d7066fc2ace9f11bf26700289a4399a67a3</originalsourceid><addsrcrecordid>eNqNkd1rFDEQwIMo9qz-C5oXwZc987XJ5vEs9QNKC0XBt5BNJm3Ovc2Z7Lbcf2_OO9vHCgNhyG9mkvkh9I6SJSVUflwvNzZv09DPw5IRKpakBqXP0IJ2SjecS_4cLQhhbcOZ_HmCXpWyJoQopuhLdMJERwVr2QKtV7hMs9_hFLAdp9uctukGxuhq5rEb4sZONfGxUrm3o4M9Od0CvoR7fB3vIOPzemfzDs8ljjfY4k92ByXaEfcwRAh4hOk-5V-v0YtghwJvjucp-vH5_PvZ1-bi6su3s9VF44RUU-N5H1gruaMdDUF0tvOMd0pwpxmnXhEpg2PWgQ6UVlSq-s1OW8G1tlJZfoo-HPpuc_o9Q5nMJhYHw2BHSHMxVEpCpGZS_wfKlG4FF-pptOWtZEIQWlF1QF1OpWQIZpvrHvPOUGL2-szaPOgze32G1KD7yrfHIXO_Af9Q989XBd4fAVucHUKuRmJ55Lq2kn8brQ4c1EXfRcimuAjVno8Z3GR8ik8-5g-gUbwX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535624401</pqid></control><display><type>article</type><title>A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Nojavan A., Farnaz ; Qian, Song S. ; Paerl, Hans W. ; Reckhow, Kenneth H. ; Albright, Elizabeth A.</creator><creatorcontrib>Nojavan A., Farnaz ; Qian, Song S. ; Paerl, Hans W. ; Reckhow, Kenneth H. ; Albright, Elizabeth A.</creatorcontrib><description>•A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality cautions future management actions.
The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2014.04.011</identifier><identifier>PMID: 24814252</identifier><identifier>CODEN: MPNBAZ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Applied ecology ; Bayes Theorem ; Bayesian analysis ; Bayesian belief network ; Belief networks ; Biological and medical sciences ; Brackish ; Brackish water ecosystems ; Climate ; Climate Change ; Ecosystem ; Ecotoxicology, biological effects of pollution ; Estuaries ; Estuarine environments ; Estuarine eutrophication ; Eutrophication ; Fresh water ecosystems ; Fundamental and applied biological sciences. Psychology ; Harmful algal blooms ; Hypoxia ; Indicators ; Management ; Marine ; Marine and brackish environment ; Models, Theoretical ; North Carolina ; Nutrients ; Rivers ; Sea water ecosystems ; Synecology ; Water pollution ; Water Quality</subject><ispartof>Marine pollution bulletin, 2014-06, Vol.83 (1), p.107-115</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d3bf2563c181ff48a8d238743c9231d7066fc2ace9f11bf26700289a4399a67a3</citedby><cites>FETCH-LOGICAL-c467t-d3bf2563c181ff48a8d238743c9231d7066fc2ace9f11bf26700289a4399a67a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marpolbul.2014.04.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28548111$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24814252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nojavan A., Farnaz</creatorcontrib><creatorcontrib>Qian, Song S.</creatorcontrib><creatorcontrib>Paerl, Hans W.</creatorcontrib><creatorcontrib>Reckhow, Kenneth H.</creatorcontrib><creatorcontrib>Albright, Elizabeth A.</creatorcontrib><title>A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network</title><title>Marine pollution bulletin</title><addtitle>Mar Pollut Bull</addtitle><description>•A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality cautions future management actions.
The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian belief network</subject><subject>Belief networks</subject><subject>Biological and medical sciences</subject><subject>Brackish</subject><subject>Brackish water ecosystems</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Ecosystem</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Estuaries</subject><subject>Estuarine environments</subject><subject>Estuarine eutrophication</subject><subject>Eutrophication</subject><subject>Fresh water ecosystems</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Harmful algal blooms</subject><subject>Hypoxia</subject><subject>Indicators</subject><subject>Management</subject><subject>Marine</subject><subject>Marine and brackish environment</subject><subject>Models, Theoretical</subject><subject>North Carolina</subject><subject>Nutrients</subject><subject>Rivers</subject><subject>Sea water ecosystems</subject><subject>Synecology</subject><subject>Water pollution</subject><subject>Water Quality</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkd1rFDEQwIMo9qz-C5oXwZc987XJ5vEs9QNKC0XBt5BNJm3Ovc2Z7Lbcf2_OO9vHCgNhyG9mkvkh9I6SJSVUflwvNzZv09DPw5IRKpakBqXP0IJ2SjecS_4cLQhhbcOZ_HmCXpWyJoQopuhLdMJERwVr2QKtV7hMs9_hFLAdp9uctukGxuhq5rEb4sZONfGxUrm3o4M9Od0CvoR7fB3vIOPzemfzDs8ljjfY4k92ByXaEfcwRAh4hOk-5V-v0YtghwJvjucp-vH5_PvZ1-bi6su3s9VF44RUU-N5H1gruaMdDUF0tvOMd0pwpxmnXhEpg2PWgQ6UVlSq-s1OW8G1tlJZfoo-HPpuc_o9Q5nMJhYHw2BHSHMxVEpCpGZS_wfKlG4FF-pptOWtZEIQWlF1QF1OpWQIZpvrHvPOUGL2-szaPOgze32G1KD7yrfHIXO_Af9Q989XBd4fAVucHUKuRmJ55Lq2kn8brQ4c1EXfRcimuAjVno8Z3GR8ik8-5g-gUbwX</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Nojavan A., Farnaz</creator><creator>Qian, Song S.</creator><creator>Paerl, Hans W.</creator><creator>Reckhow, Kenneth H.</creator><creator>Albright, Elizabeth A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140615</creationdate><title>A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network</title><author>Nojavan A., Farnaz ; Qian, Song S. ; Paerl, Hans W. ; Reckhow, Kenneth H. ; Albright, Elizabeth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d3bf2563c181ff48a8d238743c9231d7066fc2ace9f11bf26700289a4399a67a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian belief network</topic><topic>Belief networks</topic><topic>Biological and medical sciences</topic><topic>Brackish</topic><topic>Brackish water ecosystems</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Ecosystem</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Estuaries</topic><topic>Estuarine environments</topic><topic>Estuarine eutrophication</topic><topic>Eutrophication</topic><topic>Fresh water ecosystems</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Harmful algal blooms</topic><topic>Hypoxia</topic><topic>Indicators</topic><topic>Management</topic><topic>Marine</topic><topic>Marine and brackish environment</topic><topic>Models, Theoretical</topic><topic>North Carolina</topic><topic>Nutrients</topic><topic>Rivers</topic><topic>Sea water ecosystems</topic><topic>Synecology</topic><topic>Water pollution</topic><topic>Water Quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nojavan A., Farnaz</creatorcontrib><creatorcontrib>Qian, Song S.</creatorcontrib><creatorcontrib>Paerl, Hans W.</creatorcontrib><creatorcontrib>Reckhow, Kenneth H.</creatorcontrib><creatorcontrib>Albright, Elizabeth A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nojavan A., Farnaz</au><au>Qian, Song S.</au><au>Paerl, Hans W.</au><au>Reckhow, Kenneth H.</au><au>Albright, Elizabeth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network</atitle><jtitle>Marine pollution bulletin</jtitle><addtitle>Mar Pollut Bull</addtitle><date>2014-06-15</date><risdate>2014</risdate><volume>83</volume><issue>1</issue><spage>107</spage><epage>115</epage><pages>107-115</pages><issn>0025-326X</issn><eissn>1879-3363</eissn><coden>MPNBAZ</coden><abstract>•A Bayesian Belief Network (BBN) was developed to model eutrophication in an estuary.•The BBN nodes were discretized exploring a new approach, the moment matching method.•Future climatic and nutrient pollution management scenarios were investigated.•The synergy among predictors of water quality cautions future management actions.
The present paper utilizes a Bayesian Belief Network (BBN) approach to intuitively present and quantify our current understanding of the complex physical, chemical, and biological processes that lead to eutrophication in an estuarine ecosystem (New River Estuary, North Carolina, USA). The model is further used to explore the effects of plausible future climatic and nutrient pollution management scenarios on water quality indicators. The BBN, through visualizing the structure of the network, facilitates knowledge communication with managers/stakeholders who might not be experts in the underlying scientific disciplines. Moreover, the developed structure of the BBN is transferable to other comparable estuaries. The BBN nodes are discretized exploring a new approach called moment matching method. The conditional probability tables of the variables are driven by a large dataset (four years). Our results show interaction among various predictors and their impact on water quality indicators. The synergistic effects caution future management actions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24814252</pmid><doi>10.1016/j.marpolbul.2014.04.011</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-326X |
ispartof | Marine pollution bulletin, 2014-06, Vol.83 (1), p.107-115 |
issn | 0025-326X 1879-3363 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660069269 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animal and plant ecology Animal, plant and microbial ecology Applied ecology Bayes Theorem Bayesian analysis Bayesian belief network Belief networks Biological and medical sciences Brackish Brackish water ecosystems Climate Climate Change Ecosystem Ecotoxicology, biological effects of pollution Estuaries Estuarine environments Estuarine eutrophication Eutrophication Fresh water ecosystems Fundamental and applied biological sciences. Psychology Harmful algal blooms Hypoxia Indicators Management Marine Marine and brackish environment Models, Theoretical North Carolina Nutrients Rivers Sea water ecosystems Synecology Water pollution Water Quality |
title | A study of anthropogenic and climatic disturbance of the New River Estuary using a Bayesian belief network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20of%20anthropogenic%20and%20climatic%20disturbance%20of%20the%20New%20River%20Estuary%20using%20a%20Bayesian%20belief%20network&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Nojavan%20A.,%20Farnaz&rft.date=2014-06-15&rft.volume=83&rft.issue=1&rft.spage=107&rft.epage=115&rft.pages=107-115&rft.issn=0025-326X&rft.eissn=1879-3363&rft.coden=MPNBAZ&rft_id=info:doi/10.1016/j.marpolbul.2014.04.011&rft_dat=%3Cproquest_cross%3E1535624401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535624401&rft_id=info:pmid/24814252&rft_els_id=S0025326X14002148&rfr_iscdi=true |