Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells
Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalen...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2014-12, Vol.43 (46), p.17343-17351 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17351 |
---|---|
container_issue | 46 |
container_start_page | 17343 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 43 |
creator | Thorat, N. D Otari, S. V Patil, R. M Bohara, R. A Yadav, H. M Koli, V. B Chaurasia, A. K Ningthoujam, R. S |
description | Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an
in vitro
cancer hyperthermia study is done on the MCF7 cell line. During
in vitro
hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.
The LSMO-chitosan core cell formation improves cell viability, colloidal stability and hyperthermia properties and is suitable in a cancer cell acidic environment. |
doi_str_mv | 10.1039/c4dt02293a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660069061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660069061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c5f4bdfdba216c801d3e597d259d7effe09074062591910ea80e66f3e79b52d3</originalsourceid><addsrcrecordid>eNp90cuOFCEUBmBiNM5FN-41uJsYW7lUUc1y0l6TSVzY-8opOExjqqAEyqTnPXxf6emx3bkCDh8_hEPIC87ecSb1e9PYwoTQEh6Rc9503UoL2Tw-zYU6Ixc5_2AVsVY8JWeilYLLdXtOfn_fh7LD7PNbanaQwBRM_g6Kj4FCsHTw0cRproXBj77saXQV-hIzBOqWYA4SRn-HluZlxjTXkAluAxZvaIAQa6FOR8zUxUR3CIXWW_wvKPWIWZIPt_ehEAwmanAc8zPyxMGY8fnDeEm2nz5uN19WN98-f91c36xM07VlZVrXDNbZAQRXZs24ldjqzopW2w6dQ6ZZ1zBV11xzhrBmqJST2OmhFVZekqtj7JzizwVz6SefDw-AgHHJPVeKMaWZ4pW-OVKTYs4JXT8nP0Ha95z1hy70m-bD9r4L1xW_eshdhgntif799gpeH0HK5rT7r439bF01L_9n5B-uj5xZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660069061</pqid></control><display><type>article</type><title>Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Thorat, N. D ; Otari, S. V ; Patil, R. M ; Bohara, R. A ; Yadav, H. M ; Koli, V. B ; Chaurasia, A. K ; Ningthoujam, R. S</creator><creatorcontrib>Thorat, N. D ; Otari, S. V ; Patil, R. M ; Bohara, R. A ; Yadav, H. M ; Koli, V. B ; Chaurasia, A. K ; Ningthoujam, R. S</creatorcontrib><description>Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an
in vitro
cancer hyperthermia study is done on the MCF7 cell line. During
in vitro
hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.
The LSMO-chitosan core cell formation improves cell viability, colloidal stability and hyperthermia properties and is suitable in a cancer cell acidic environment.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c4dt02293a</identifier><identifier>PMID: 25321385</identifier><language>eng</language><publisher>England</publisher><subject>Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - chemistry ; Biocompatibility ; Biocompatible Materials - chemistry ; Cancer ; Cell Survival ; Chitosan ; Chitosan - chemical synthesis ; Chitosan - chemistry ; Colloids ; HeLa Cells ; Hot Temperature ; Humans ; Magnetics ; MCF-7 Cells ; Microscopy, Electron, Transmission ; Nanoparticles ; Nanoparticles - chemistry ; Nanostructure ; Shells ; Spectroscopy, Fourier Transform Infrared ; Viability</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2014-12, Vol.43 (46), p.17343-17351</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c5f4bdfdba216c801d3e597d259d7effe09074062591910ea80e66f3e79b52d3</citedby><cites>FETCH-LOGICAL-c475t-c5f4bdfdba216c801d3e597d259d7effe09074062591910ea80e66f3e79b52d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25321385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thorat, N. D</creatorcontrib><creatorcontrib>Otari, S. V</creatorcontrib><creatorcontrib>Patil, R. M</creatorcontrib><creatorcontrib>Bohara, R. A</creatorcontrib><creatorcontrib>Yadav, H. M</creatorcontrib><creatorcontrib>Koli, V. B</creatorcontrib><creatorcontrib>Chaurasia, A. K</creatorcontrib><creatorcontrib>Ningthoujam, R. S</creatorcontrib><title>Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an
in vitro
cancer hyperthermia study is done on the MCF7 cell line. During
in vitro
hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.
The LSMO-chitosan core cell formation improves cell viability, colloidal stability and hyperthermia properties and is suitable in a cancer cell acidic environment.</description><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cancer</subject><subject>Cell Survival</subject><subject>Chitosan</subject><subject>Chitosan - chemical synthesis</subject><subject>Chitosan - chemistry</subject><subject>Colloids</subject><subject>HeLa Cells</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Magnetics</subject><subject>MCF-7 Cells</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructure</subject><subject>Shells</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Viability</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90cuOFCEUBmBiNM5FN-41uJsYW7lUUc1y0l6TSVzY-8opOExjqqAEyqTnPXxf6emx3bkCDh8_hEPIC87ecSb1e9PYwoTQEh6Rc9503UoL2Tw-zYU6Ixc5_2AVsVY8JWeilYLLdXtOfn_fh7LD7PNbanaQwBRM_g6Kj4FCsHTw0cRproXBj77saXQV-hIzBOqWYA4SRn-HluZlxjTXkAluAxZvaIAQa6FOR8zUxUR3CIXWW_wvKPWIWZIPt_ehEAwmanAc8zPyxMGY8fnDeEm2nz5uN19WN98-f91c36xM07VlZVrXDNbZAQRXZs24ldjqzopW2w6dQ6ZZ1zBV11xzhrBmqJST2OmhFVZekqtj7JzizwVz6SefDw-AgHHJPVeKMaWZ4pW-OVKTYs4JXT8nP0Ha95z1hy70m-bD9r4L1xW_eshdhgntif799gpeH0HK5rT7r439bF01L_9n5B-uj5xZ</recordid><startdate>20141214</startdate><enddate>20141214</enddate><creator>Thorat, N. D</creator><creator>Otari, S. V</creator><creator>Patil, R. M</creator><creator>Bohara, R. A</creator><creator>Yadav, H. M</creator><creator>Koli, V. B</creator><creator>Chaurasia, A. K</creator><creator>Ningthoujam, R. S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141214</creationdate><title>Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells</title><author>Thorat, N. D ; Otari, S. V ; Patil, R. M ; Bohara, R. A ; Yadav, H. M ; Koli, V. B ; Chaurasia, A. K ; Ningthoujam, R. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c5f4bdfdba216c801d3e597d259d7effe09074062591910ea80e66f3e79b52d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cancer</topic><topic>Cell Survival</topic><topic>Chitosan</topic><topic>Chitosan - chemical synthesis</topic><topic>Chitosan - chemistry</topic><topic>Colloids</topic><topic>HeLa Cells</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Magnetics</topic><topic>MCF-7 Cells</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructure</topic><topic>Shells</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorat, N. D</creatorcontrib><creatorcontrib>Otari, S. V</creatorcontrib><creatorcontrib>Patil, R. M</creatorcontrib><creatorcontrib>Bohara, R. A</creatorcontrib><creatorcontrib>Yadav, H. M</creatorcontrib><creatorcontrib>Koli, V. B</creatorcontrib><creatorcontrib>Chaurasia, A. K</creatorcontrib><creatorcontrib>Ningthoujam, R. S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorat, N. D</au><au>Otari, S. V</au><au>Patil, R. M</au><au>Bohara, R. A</au><au>Yadav, H. M</au><au>Koli, V. B</au><au>Chaurasia, A. K</au><au>Ningthoujam, R. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2014-12-14</date><risdate>2014</risdate><volume>43</volume><issue>46</issue><spage>17343</spage><epage>17351</epage><pages>17343-17351</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an
in vitro
cancer hyperthermia study is done on the MCF7 cell line. During
in vitro
hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.
The LSMO-chitosan core cell formation improves cell viability, colloidal stability and hyperthermia properties and is suitable in a cancer cell acidic environment.</abstract><cop>England</cop><pmid>25321385</pmid><doi>10.1039/c4dt02293a</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2014-12, Vol.43 (46), p.17343-17351 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660069061 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Antineoplastic Agents - chemical synthesis Antineoplastic Agents - chemistry Biocompatibility Biocompatible Materials - chemistry Cancer Cell Survival Chitosan Chitosan - chemical synthesis Chitosan - chemistry Colloids HeLa Cells Hot Temperature Humans Magnetics MCF-7 Cells Microscopy, Electron, Transmission Nanoparticles Nanoparticles - chemistry Nanostructure Shells Spectroscopy, Fourier Transform Infrared Viability |
title | Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20characterization%20and%20biocompatibility%20of%20chitosan%20functionalized%20superparamagnetic%20nanoparticles%20for%20heat%20activated%20curing%20of%20cancer%20cells&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Thorat,%20N.%20D&rft.date=2014-12-14&rft.volume=43&rft.issue=46&rft.spage=17343&rft.epage=17351&rft.pages=17343-17351&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c4dt02293a&rft_dat=%3Cproquest_pubme%3E1660069061%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660069061&rft_id=info:pmid/25321385&rfr_iscdi=true |