Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells

Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2014-12, Vol.43 (46), p.17343-17351
Hauptverfasser: Thorat, N. D, Otari, S. V, Patil, R. M, Bohara, R. A, Yadav, H. M, Koli, V. B, Chaurasia, A. K, Ningthoujam, R. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17351
container_issue 46
container_start_page 17343
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 43
creator Thorat, N. D
Otari, S. V
Patil, R. M
Bohara, R. A
Yadav, H. M
Koli, V. B
Chaurasia, A. K
Ningthoujam, R. S
description Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy. The LSMO-chitosan core cell formation improves cell viability, colloidal stability and hyperthermia properties and is suitable in a cancer cell acidic environment.
doi_str_mv 10.1039/c4dt02293a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660069061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660069061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c5f4bdfdba216c801d3e597d259d7effe09074062591910ea80e66f3e79b52d3</originalsourceid><addsrcrecordid>eNp90cuOFCEUBmBiNM5FN-41uJsYW7lUUc1y0l6TSVzY-8opOExjqqAEyqTnPXxf6emx3bkCDh8_hEPIC87ecSb1e9PYwoTQEh6Rc9503UoL2Tw-zYU6Ixc5_2AVsVY8JWeilYLLdXtOfn_fh7LD7PNbanaQwBRM_g6Kj4FCsHTw0cRproXBj77saXQV-hIzBOqWYA4SRn-HluZlxjTXkAluAxZvaIAQa6FOR8zUxUR3CIXWW_wvKPWIWZIPt_ehEAwmanAc8zPyxMGY8fnDeEm2nz5uN19WN98-f91c36xM07VlZVrXDNbZAQRXZs24ldjqzopW2w6dQ6ZZ1zBV11xzhrBmqJST2OmhFVZekqtj7JzizwVz6SefDw-AgHHJPVeKMaWZ4pW-OVKTYs4JXT8nP0Ha95z1hy70m-bD9r4L1xW_eshdhgntif799gpeH0HK5rT7r439bF01L_9n5B-uj5xZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660069061</pqid></control><display><type>article</type><title>Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Thorat, N. D ; Otari, S. V ; Patil, R. M ; Bohara, R. A ; Yadav, H. M ; Koli, V. B ; Chaurasia, A. K ; Ningthoujam, R. S</creator><creatorcontrib>Thorat, N. D ; Otari, S. V ; Patil, R. M ; Bohara, R. A ; Yadav, H. M ; Koli, V. B ; Chaurasia, A. K ; Ningthoujam, R. S</creatorcontrib><description>Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy. The LSMO-chitosan core cell formation improves cell viability, colloidal stability and hyperthermia properties and is suitable in a cancer cell acidic environment.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c4dt02293a</identifier><identifier>PMID: 25321385</identifier><language>eng</language><publisher>England</publisher><subject>Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - chemistry ; Biocompatibility ; Biocompatible Materials - chemistry ; Cancer ; Cell Survival ; Chitosan ; Chitosan - chemical synthesis ; Chitosan - chemistry ; Colloids ; HeLa Cells ; Hot Temperature ; Humans ; Magnetics ; MCF-7 Cells ; Microscopy, Electron, Transmission ; Nanoparticles ; Nanoparticles - chemistry ; Nanostructure ; Shells ; Spectroscopy, Fourier Transform Infrared ; Viability</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2014-12, Vol.43 (46), p.17343-17351</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c5f4bdfdba216c801d3e597d259d7effe09074062591910ea80e66f3e79b52d3</citedby><cites>FETCH-LOGICAL-c475t-c5f4bdfdba216c801d3e597d259d7effe09074062591910ea80e66f3e79b52d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25321385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thorat, N. D</creatorcontrib><creatorcontrib>Otari, S. V</creatorcontrib><creatorcontrib>Patil, R. M</creatorcontrib><creatorcontrib>Bohara, R. A</creatorcontrib><creatorcontrib>Yadav, H. M</creatorcontrib><creatorcontrib>Koli, V. B</creatorcontrib><creatorcontrib>Chaurasia, A. K</creatorcontrib><creatorcontrib>Ningthoujam, R. S</creatorcontrib><title>Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy. The LSMO-chitosan core cell formation improves cell viability, colloidal stability and hyperthermia properties and is suitable in a cancer cell acidic environment.</description><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cancer</subject><subject>Cell Survival</subject><subject>Chitosan</subject><subject>Chitosan - chemical synthesis</subject><subject>Chitosan - chemistry</subject><subject>Colloids</subject><subject>HeLa Cells</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Magnetics</subject><subject>MCF-7 Cells</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructure</subject><subject>Shells</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Viability</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90cuOFCEUBmBiNM5FN-41uJsYW7lUUc1y0l6TSVzY-8opOExjqqAEyqTnPXxf6emx3bkCDh8_hEPIC87ecSb1e9PYwoTQEh6Rc9503UoL2Tw-zYU6Ixc5_2AVsVY8JWeilYLLdXtOfn_fh7LD7PNbanaQwBRM_g6Kj4FCsHTw0cRproXBj77saXQV-hIzBOqWYA4SRn-HluZlxjTXkAluAxZvaIAQa6FOR8zUxUR3CIXWW_wvKPWIWZIPt_ehEAwmanAc8zPyxMGY8fnDeEm2nz5uN19WN98-f91c36xM07VlZVrXDNbZAQRXZs24ldjqzopW2w6dQ6ZZ1zBV11xzhrBmqJST2OmhFVZekqtj7JzizwVz6SefDw-AgHHJPVeKMaWZ4pW-OVKTYs4JXT8nP0Ha95z1hy70m-bD9r4L1xW_eshdhgntif799gpeH0HK5rT7r439bF01L_9n5B-uj5xZ</recordid><startdate>20141214</startdate><enddate>20141214</enddate><creator>Thorat, N. D</creator><creator>Otari, S. V</creator><creator>Patil, R. M</creator><creator>Bohara, R. A</creator><creator>Yadav, H. M</creator><creator>Koli, V. B</creator><creator>Chaurasia, A. K</creator><creator>Ningthoujam, R. S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141214</creationdate><title>Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells</title><author>Thorat, N. D ; Otari, S. V ; Patil, R. M ; Bohara, R. A ; Yadav, H. M ; Koli, V. B ; Chaurasia, A. K ; Ningthoujam, R. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c5f4bdfdba216c801d3e597d259d7effe09074062591910ea80e66f3e79b52d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cancer</topic><topic>Cell Survival</topic><topic>Chitosan</topic><topic>Chitosan - chemical synthesis</topic><topic>Chitosan - chemistry</topic><topic>Colloids</topic><topic>HeLa Cells</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Magnetics</topic><topic>MCF-7 Cells</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructure</topic><topic>Shells</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorat, N. D</creatorcontrib><creatorcontrib>Otari, S. V</creatorcontrib><creatorcontrib>Patil, R. M</creatorcontrib><creatorcontrib>Bohara, R. A</creatorcontrib><creatorcontrib>Yadav, H. M</creatorcontrib><creatorcontrib>Koli, V. B</creatorcontrib><creatorcontrib>Chaurasia, A. K</creatorcontrib><creatorcontrib>Ningthoujam, R. S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorat, N. D</au><au>Otari, S. V</au><au>Patil, R. M</au><au>Bohara, R. A</au><au>Yadav, H. M</au><au>Koli, V. B</au><au>Chaurasia, A. K</au><au>Ningthoujam, R. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2014-12-14</date><risdate>2014</risdate><volume>43</volume><issue>46</issue><spage>17343</spage><epage>17351</epage><pages>17343-17351</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy. The LSMO-chitosan core cell formation improves cell viability, colloidal stability and hyperthermia properties and is suitable in a cancer cell acidic environment.</abstract><cop>England</cop><pmid>25321385</pmid><doi>10.1039/c4dt02293a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2014-12, Vol.43 (46), p.17343-17351
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_1660069061
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - chemistry
Biocompatibility
Biocompatible Materials - chemistry
Cancer
Cell Survival
Chitosan
Chitosan - chemical synthesis
Chitosan - chemistry
Colloids
HeLa Cells
Hot Temperature
Humans
Magnetics
MCF-7 Cells
Microscopy, Electron, Transmission
Nanoparticles
Nanoparticles - chemistry
Nanostructure
Shells
Spectroscopy, Fourier Transform Infrared
Viability
title Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis,%20characterization%20and%20biocompatibility%20of%20chitosan%20functionalized%20superparamagnetic%20nanoparticles%20for%20heat%20activated%20curing%20of%20cancer%20cells&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Thorat,%20N.%20D&rft.date=2014-12-14&rft.volume=43&rft.issue=46&rft.spage=17343&rft.epage=17351&rft.pages=17343-17351&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c4dt02293a&rft_dat=%3Cproquest_pubme%3E1660069061%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660069061&rft_id=info:pmid/25321385&rfr_iscdi=true