Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier
The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron‐oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI–SPION, a poten...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2015-01, Vol.11 (2), p.239-247 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | 2 |
container_start_page | 239 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 11 |
creator | Rao, Yue-feng Chen, Wei Liang, Xing-guang Huang, Yong-zhuo Miao, Jing Liu, Lin Lou, Yan Zhang, Xing-guo Wang, Ben Tang, Rui-kang Chen, Zhong Lu, Xiao-yang |
description | The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron‐oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI–SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI–SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g−1. They feature specific pH‐sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose‐dependent. In vitro transdermal studies demonstrate that the EPI–SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic‐field‐assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION‐based vector for feasible transdermal therapy of skin cancer.
As a novel transdermal anticancer agent, epirubicin‐loaded superparamagnetic iron oxide nanoparticles (EPI–SPION) exhibit excellent magnetic responsiveness, a pH‐sensitive release profile, and biocompatibility. The EPI–SPION composites, driven by magnetic force, can penetrate the human dermis stratum readily via a transfollicular pathway, which follows an alternative strategy for skin cancer treatment by using superparamagentic nanomaterials. |
doi_str_mv | 10.1002/smll.201400775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660067845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652397928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5145-4120725973e755f441d9c481d0921535c2dc2e2dec6334689ec99414ca9b84f93</originalsourceid><addsrcrecordid>eNqN0c1u1DAUBeAIgWgpbFkiS2zYZPBvErODoR0qhXYxBZaWx7lp3SZOuE5K8wR97WY0ZYTYwMqW73ePZJ0kec3oglHK38e2aRacMklpnqsnySHLmEizguun-zujB8mLGK8pFYzL_HlywKXmisrsMLk_7j2OG-98SMvOVlCR9dgD9hZtay8DDN6RU-xCen7nKyBnNnTzbH5tIJK6Q3KBNsQKsLUN-QyNvwWcPpClDQ7m4RWg7SeymcjSoxvbWwiDD5dkuAKyvvGBfLKIHvBl8qy2TYRXj-dR8u3k-GL5JS3PV6fLj2XqFJMqlYzTnCudC8iVqqVklXayYBXVnCmhHK8cB16By4SQWaHBaS2ZdFZvCllrcZS82-X22P0cIQ6m9dFB09gA3RgNyzJKs7yQ6j-o4kLnmhczffsXve5GDPNHZiUFE4rSrVrslMMuRoTa9Ohbi5Nh1GzbNNs2zb7NeeHNY-y4aaHa89_1zUDvwC_fwPSPOLP-WpZ_hqe7XR8HuNvvWrwxWS5m_uNsZU7kd5GtuDJaPADoDrqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643135008</pqid></control><display><type>article</type><title>Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Rao, Yue-feng ; Chen, Wei ; Liang, Xing-guang ; Huang, Yong-zhuo ; Miao, Jing ; Liu, Lin ; Lou, Yan ; Zhang, Xing-guo ; Wang, Ben ; Tang, Rui-kang ; Chen, Zhong ; Lu, Xiao-yang</creator><creatorcontrib>Rao, Yue-feng ; Chen, Wei ; Liang, Xing-guang ; Huang, Yong-zhuo ; Miao, Jing ; Liu, Lin ; Lou, Yan ; Zhang, Xing-guo ; Wang, Ben ; Tang, Rui-kang ; Chen, Zhong ; Lu, Xiao-yang</creatorcontrib><description>The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron‐oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI–SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI–SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g−1. They feature specific pH‐sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose‐dependent. In vitro transdermal studies demonstrate that the EPI–SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic‐field‐assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION‐based vector for feasible transdermal therapy of skin cancer.
As a novel transdermal anticancer agent, epirubicin‐loaded superparamagnetic iron oxide nanoparticles (EPI–SPION) exhibit excellent magnetic responsiveness, a pH‐sensitive release profile, and biocompatibility. The EPI–SPION composites, driven by magnetic force, can penetrate the human dermis stratum readily via a transfollicular pathway, which follows an alternative strategy for skin cancer treatment by using superparamagentic nanomaterials.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201400775</identifier><identifier>PMID: 24925046</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Antibiotics, Antineoplastic - administration & dosage ; Biocompatible Materials ; biomedical applications ; Cancer ; Cell Line, Tumor ; drug delivery ; Drug Delivery Systems ; epirubicin ; Epirubicin - administration & dosage ; Ferric Compounds - administration & dosage ; Humans ; Hydrogen-Ion Concentration ; iron oxide ; Magnetic fields ; Mathematical analysis ; Metal Nanoparticles ; Nanoparticles ; Nanotechnology ; Neoplasms - drug therapy ; Neoplasms - pathology ; Skin - metabolism ; Skin cancer ; superparamagnetic materials ; Therapy ; Tumor Microenvironment ; Tumors ; Vectors (mathematics)</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2015-01, Vol.11 (2), p.239-247</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5145-4120725973e755f441d9c481d0921535c2dc2e2dec6334689ec99414ca9b84f93</citedby><cites>FETCH-LOGICAL-c5145-4120725973e755f441d9c481d0921535c2dc2e2dec6334689ec99414ca9b84f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201400775$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201400775$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24925046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, Yue-feng</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Liang, Xing-guang</creatorcontrib><creatorcontrib>Huang, Yong-zhuo</creatorcontrib><creatorcontrib>Miao, Jing</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Lou, Yan</creatorcontrib><creatorcontrib>Zhang, Xing-guo</creatorcontrib><creatorcontrib>Wang, Ben</creatorcontrib><creatorcontrib>Tang, Rui-kang</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Lu, Xiao-yang</creatorcontrib><title>Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron‐oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI–SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI–SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g−1. They feature specific pH‐sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose‐dependent. In vitro transdermal studies demonstrate that the EPI–SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic‐field‐assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION‐based vector for feasible transdermal therapy of skin cancer.
As a novel transdermal anticancer agent, epirubicin‐loaded superparamagnetic iron oxide nanoparticles (EPI–SPION) exhibit excellent magnetic responsiveness, a pH‐sensitive release profile, and biocompatibility. The EPI–SPION composites, driven by magnetic force, can penetrate the human dermis stratum readily via a transfollicular pathway, which follows an alternative strategy for skin cancer treatment by using superparamagentic nanomaterials.</description><subject>Antibiotics, Antineoplastic - administration & dosage</subject><subject>Biocompatible Materials</subject><subject>biomedical applications</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>drug delivery</subject><subject>Drug Delivery Systems</subject><subject>epirubicin</subject><subject>Epirubicin - administration & dosage</subject><subject>Ferric Compounds - administration & dosage</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>iron oxide</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Metal Nanoparticles</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Skin - metabolism</subject><subject>Skin cancer</subject><subject>superparamagnetic materials</subject><subject>Therapy</subject><subject>Tumor Microenvironment</subject><subject>Tumors</subject><subject>Vectors (mathematics)</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1u1DAUBeAIgWgpbFkiS2zYZPBvErODoR0qhXYxBZaWx7lp3SZOuE5K8wR97WY0ZYTYwMqW73ePZJ0kec3oglHK38e2aRacMklpnqsnySHLmEizguun-zujB8mLGK8pFYzL_HlywKXmisrsMLk_7j2OG-98SMvOVlCR9dgD9hZtay8DDN6RU-xCen7nKyBnNnTzbH5tIJK6Q3KBNsQKsLUN-QyNvwWcPpClDQ7m4RWg7SeymcjSoxvbWwiDD5dkuAKyvvGBfLKIHvBl8qy2TYRXj-dR8u3k-GL5JS3PV6fLj2XqFJMqlYzTnCudC8iVqqVklXayYBXVnCmhHK8cB16By4SQWaHBaS2ZdFZvCllrcZS82-X22P0cIQ6m9dFB09gA3RgNyzJKs7yQ6j-o4kLnmhczffsXve5GDPNHZiUFE4rSrVrslMMuRoTa9Ohbi5Nh1GzbNNs2zb7NeeHNY-y4aaHa89_1zUDvwC_fwPSPOLP-WpZ_hqe7XR8HuNvvWrwxWS5m_uNsZU7kd5GtuDJaPADoDrqY</recordid><startdate>20150114</startdate><enddate>20150114</enddate><creator>Rao, Yue-feng</creator><creator>Chen, Wei</creator><creator>Liang, Xing-guang</creator><creator>Huang, Yong-zhuo</creator><creator>Miao, Jing</creator><creator>Liu, Lin</creator><creator>Lou, Yan</creator><creator>Zhang, Xing-guo</creator><creator>Wang, Ben</creator><creator>Tang, Rui-kang</creator><creator>Chen, Zhong</creator><creator>Lu, Xiao-yang</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150114</creationdate><title>Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier</title><author>Rao, Yue-feng ; Chen, Wei ; Liang, Xing-guang ; Huang, Yong-zhuo ; Miao, Jing ; Liu, Lin ; Lou, Yan ; Zhang, Xing-guo ; Wang, Ben ; Tang, Rui-kang ; Chen, Zhong ; Lu, Xiao-yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5145-4120725973e755f441d9c481d0921535c2dc2e2dec6334689ec99414ca9b84f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antibiotics, Antineoplastic - administration & dosage</topic><topic>Biocompatible Materials</topic><topic>biomedical applications</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>drug delivery</topic><topic>Drug Delivery Systems</topic><topic>epirubicin</topic><topic>Epirubicin - administration & dosage</topic><topic>Ferric Compounds - administration & dosage</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>iron oxide</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Metal Nanoparticles</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Skin - metabolism</topic><topic>Skin cancer</topic><topic>superparamagnetic materials</topic><topic>Therapy</topic><topic>Tumor Microenvironment</topic><topic>Tumors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Yue-feng</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Liang, Xing-guang</creatorcontrib><creatorcontrib>Huang, Yong-zhuo</creatorcontrib><creatorcontrib>Miao, Jing</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Lou, Yan</creatorcontrib><creatorcontrib>Zhang, Xing-guo</creatorcontrib><creatorcontrib>Wang, Ben</creatorcontrib><creatorcontrib>Tang, Rui-kang</creatorcontrib><creatorcontrib>Chen, Zhong</creatorcontrib><creatorcontrib>Lu, Xiao-yang</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Yue-feng</au><au>Chen, Wei</au><au>Liang, Xing-guang</au><au>Huang, Yong-zhuo</au><au>Miao, Jing</au><au>Liu, Lin</au><au>Lou, Yan</au><au>Zhang, Xing-guo</au><au>Wang, Ben</au><au>Tang, Rui-kang</au><au>Chen, Zhong</au><au>Lu, Xiao-yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2015-01-14</date><risdate>2015</risdate><volume>11</volume><issue>2</issue><spage>239</spage><epage>247</epage><pages>239-247</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron‐oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI–SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI–SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g−1. They feature specific pH‐sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose‐dependent. In vitro transdermal studies demonstrate that the EPI–SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic‐field‐assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION‐based vector for feasible transdermal therapy of skin cancer.
As a novel transdermal anticancer agent, epirubicin‐loaded superparamagnetic iron oxide nanoparticles (EPI–SPION) exhibit excellent magnetic responsiveness, a pH‐sensitive release profile, and biocompatibility. The EPI–SPION composites, driven by magnetic force, can penetrate the human dermis stratum readily via a transfollicular pathway, which follows an alternative strategy for skin cancer treatment by using superparamagentic nanomaterials.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>24925046</pmid><doi>10.1002/smll.201400775</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2015-01, Vol.11 (2), p.239-247 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660067845 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Antibiotics, Antineoplastic - administration & dosage Biocompatible Materials biomedical applications Cancer Cell Line, Tumor drug delivery Drug Delivery Systems epirubicin Epirubicin - administration & dosage Ferric Compounds - administration & dosage Humans Hydrogen-Ion Concentration iron oxide Magnetic fields Mathematical analysis Metal Nanoparticles Nanoparticles Nanotechnology Neoplasms - drug therapy Neoplasms - pathology Skin - metabolism Skin cancer superparamagnetic materials Therapy Tumor Microenvironment Tumors Vectors (mathematics) |
title | Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epirubicin-Loaded%20Superparamagnetic%20Iron-Oxide%20Nanoparticles%20for%20Transdermal%20Delivery:%20Cancer%20Therapy%20by%20Circumventing%20the%20Skin%20Barrier&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rao,%20Yue-feng&rft.date=2015-01-14&rft.volume=11&rft.issue=2&rft.spage=239&rft.epage=247&rft.pages=239-247&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201400775&rft_dat=%3Cproquest_cross%3E1652397928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1643135008&rft_id=info:pmid/24925046&rfr_iscdi=true |