Failure strain formulation via average stress triaxiality of an EH36 high strength steel

The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2014-11, Vol.91, p.218-226
Hauptverfasser: Choung, Joonmo, Nam, Woongshik, Lee, Daeyong, Song, Chang Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue
container_start_page 218
container_title Ocean engineering
container_volume 91
creator Choung, Joonmo
Nam, Woongshik
Lee, Daeyong
Song, Chang Yong
description The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A number of tensile tests are carried out for flat specimens with different notches from relatively smooth to very sharp levels. Numerical simulations of each specimen are performed via nonlinear finite element analysis (FEA). By means of comparing engineering stress versus strain curves obtained from the tests with simulated ones, failure initiation in numerical simulations are identified. Equivalent plastic strains to fracture are plotted in average stress triaxiality domain, then a new failure strain formula is proposed in relatively low average stress triaxiality region. •We explores failure strain formulation via tests and simulations of EH36 steel.•We assume the failure strain as the function of average stress triaxiality.•Stress–strain curves are obtained from the simulations for the notched specimens.•Fracture initiation is recognized comparing the simulations with the test results.
doi_str_mv 10.1016/j.oceaneng.2014.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660067841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029801814003436</els_id><sourcerecordid>1660067841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-537debac6cab47501b5f6efe2193b2be0cef6b76b0dc7ddd6b9c831fce8e56913</originalsourceid><addsrcrecordid>eNqNkE1v2zAMhoVhA5Zl-wuDLgN6sUv6Q5ZuLYp2HVCglw3YTaBlKlHg2K3kBM2_n9N0vbYnEuDzkuAjxHeEHAHV-SYfHdPAwyovAKscTA5oPogF6qbM6qLWH8UCoDCZBtSfxZeUNgCgFJQL8feGQr-LLNMUKQzSj3G762kK4yD3gSTtOdLqecwpySkGegrUh-kgRy9pkNe3pZLrsFo_I8NqOjbM_VfxyVOf-NtLXYo_N9e_r26zu_ufv64u7zJXgZ6yumw6bskpR23V1IBt7RV7LtCUbdEyOPaqbVQLnWu6rlOtcbpE71hzrQyWS3F22vsQx8cdp8luQ3Lc97ORcZcszn-CanT1HrRqABHLYkbVCXVxTCmytw8xbCkeLII9Wrcb-9-6PVq3YOxsfQ7-eLlByVHvIw0upNd0oQ0aXTczd3HieHazDxxtcoEHx12I7CbbjeGtU_8AISKczA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647011132</pqid></control><display><type>article</type><title>Failure strain formulation via average stress triaxiality of an EH36 high strength steel</title><source>Elsevier ScienceDirect Journals</source><creator>Choung, Joonmo ; Nam, Woongshik ; Lee, Daeyong ; Song, Chang Yong</creator><creatorcontrib>Choung, Joonmo ; Nam, Woongshik ; Lee, Daeyong ; Song, Chang Yong</creatorcontrib><description>The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A number of tensile tests are carried out for flat specimens with different notches from relatively smooth to very sharp levels. Numerical simulations of each specimen are performed via nonlinear finite element analysis (FEA). By means of comparing engineering stress versus strain curves obtained from the tests with simulated ones, failure initiation in numerical simulations are identified. Equivalent plastic strains to fracture are plotted in average stress triaxiality domain, then a new failure strain formula is proposed in relatively low average stress triaxiality region. •We explores failure strain formulation via tests and simulations of EH36 steel.•We assume the failure strain as the function of average stress triaxiality.•Stress–strain curves are obtained from the simulations for the notched specimens.•Fracture initiation is recognized comparing the simulations with the test results.</description><identifier>ISSN: 0029-8018</identifier><identifier>EISSN: 1873-5258</identifier><identifier>DOI: 10.1016/j.oceaneng.2014.09.019</identifier><identifier>CODEN: OCENBQ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Average stress triaxiality ; Average true stress ; Building structure ; Buildings. Public works ; Computer simulation ; Construction (buildings and works) ; EH36 ; Equivalent plastic strain ; Exact sciences and technology ; Failure ; Failure strain ; Finite element method ; Marine ; Materials ; Mathematical models ; Metal structure ; Metallic materials ; Plastic deformation ; Strain ; Stresses ; Triaxiality</subject><ispartof>Ocean engineering, 2014-11, Vol.91, p.218-226</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-537debac6cab47501b5f6efe2193b2be0cef6b76b0dc7ddd6b9c831fce8e56913</citedby><cites>FETCH-LOGICAL-c408t-537debac6cab47501b5f6efe2193b2be0cef6b76b0dc7ddd6b9c831fce8e56913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029801814003436$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28919857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Choung, Joonmo</creatorcontrib><creatorcontrib>Nam, Woongshik</creatorcontrib><creatorcontrib>Lee, Daeyong</creatorcontrib><creatorcontrib>Song, Chang Yong</creatorcontrib><title>Failure strain formulation via average stress triaxiality of an EH36 high strength steel</title><title>Ocean engineering</title><description>The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A number of tensile tests are carried out for flat specimens with different notches from relatively smooth to very sharp levels. Numerical simulations of each specimen are performed via nonlinear finite element analysis (FEA). By means of comparing engineering stress versus strain curves obtained from the tests with simulated ones, failure initiation in numerical simulations are identified. Equivalent plastic strains to fracture are plotted in average stress triaxiality domain, then a new failure strain formula is proposed in relatively low average stress triaxiality region. •We explores failure strain formulation via tests and simulations of EH36 steel.•We assume the failure strain as the function of average stress triaxiality.•Stress–strain curves are obtained from the simulations for the notched specimens.•Fracture initiation is recognized comparing the simulations with the test results.</description><subject>Applied sciences</subject><subject>Average stress triaxiality</subject><subject>Average true stress</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Computer simulation</subject><subject>Construction (buildings and works)</subject><subject>EH36</subject><subject>Equivalent plastic strain</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Failure strain</subject><subject>Finite element method</subject><subject>Marine</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Metal structure</subject><subject>Metallic materials</subject><subject>Plastic deformation</subject><subject>Strain</subject><subject>Stresses</subject><subject>Triaxiality</subject><issn>0029-8018</issn><issn>1873-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v2zAMhoVhA5Zl-wuDLgN6sUv6Q5ZuLYp2HVCglw3YTaBlKlHg2K3kBM2_n9N0vbYnEuDzkuAjxHeEHAHV-SYfHdPAwyovAKscTA5oPogF6qbM6qLWH8UCoDCZBtSfxZeUNgCgFJQL8feGQr-LLNMUKQzSj3G762kK4yD3gSTtOdLqecwpySkGegrUh-kgRy9pkNe3pZLrsFo_I8NqOjbM_VfxyVOf-NtLXYo_N9e_r26zu_ufv64u7zJXgZ6yumw6bskpR23V1IBt7RV7LtCUbdEyOPaqbVQLnWu6rlOtcbpE71hzrQyWS3F22vsQx8cdp8luQ3Lc97ORcZcszn-CanT1HrRqABHLYkbVCXVxTCmytw8xbCkeLII9Wrcb-9-6PVq3YOxsfQ7-eLlByVHvIw0upNd0oQ0aXTczd3HieHazDxxtcoEHx12I7CbbjeGtU_8AISKczA</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Choung, Joonmo</creator><creator>Nam, Woongshik</creator><creator>Lee, Daeyong</creator><creator>Song, Chang Yong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141115</creationdate><title>Failure strain formulation via average stress triaxiality of an EH36 high strength steel</title><author>Choung, Joonmo ; Nam, Woongshik ; Lee, Daeyong ; Song, Chang Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-537debac6cab47501b5f6efe2193b2be0cef6b76b0dc7ddd6b9c831fce8e56913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Average stress triaxiality</topic><topic>Average true stress</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Computer simulation</topic><topic>Construction (buildings and works)</topic><topic>EH36</topic><topic>Equivalent plastic strain</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Failure strain</topic><topic>Finite element method</topic><topic>Marine</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Metal structure</topic><topic>Metallic materials</topic><topic>Plastic deformation</topic><topic>Strain</topic><topic>Stresses</topic><topic>Triaxiality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choung, Joonmo</creatorcontrib><creatorcontrib>Nam, Woongshik</creatorcontrib><creatorcontrib>Lee, Daeyong</creatorcontrib><creatorcontrib>Song, Chang Yong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choung, Joonmo</au><au>Nam, Woongshik</au><au>Lee, Daeyong</au><au>Song, Chang Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure strain formulation via average stress triaxiality of an EH36 high strength steel</atitle><jtitle>Ocean engineering</jtitle><date>2014-11-15</date><risdate>2014</risdate><volume>91</volume><spage>218</spage><epage>226</epage><pages>218-226</pages><issn>0029-8018</issn><eissn>1873-5258</eissn><coden>OCENBQ</coden><abstract>The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A number of tensile tests are carried out for flat specimens with different notches from relatively smooth to very sharp levels. Numerical simulations of each specimen are performed via nonlinear finite element analysis (FEA). By means of comparing engineering stress versus strain curves obtained from the tests with simulated ones, failure initiation in numerical simulations are identified. Equivalent plastic strains to fracture are plotted in average stress triaxiality domain, then a new failure strain formula is proposed in relatively low average stress triaxiality region. •We explores failure strain formulation via tests and simulations of EH36 steel.•We assume the failure strain as the function of average stress triaxiality.•Stress–strain curves are obtained from the simulations for the notched specimens.•Fracture initiation is recognized comparing the simulations with the test results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.oceaneng.2014.09.019</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-8018
ispartof Ocean engineering, 2014-11, Vol.91, p.218-226
issn 0029-8018
1873-5258
language eng
recordid cdi_proquest_miscellaneous_1660067841
source Elsevier ScienceDirect Journals
subjects Applied sciences
Average stress triaxiality
Average true stress
Building structure
Buildings. Public works
Computer simulation
Construction (buildings and works)
EH36
Equivalent plastic strain
Exact sciences and technology
Failure
Failure strain
Finite element method
Marine
Materials
Mathematical models
Metal structure
Metallic materials
Plastic deformation
Strain
Stresses
Triaxiality
title Failure strain formulation via average stress triaxiality of an EH36 high strength steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20strain%20formulation%20via%20average%20stress%20triaxiality%20of%20an%20EH36%20high%20strength%20steel&rft.jtitle=Ocean%20engineering&rft.au=Choung,%20Joonmo&rft.date=2014-11-15&rft.volume=91&rft.spage=218&rft.epage=226&rft.pages=218-226&rft.issn=0029-8018&rft.eissn=1873-5258&rft.coden=OCENBQ&rft_id=info:doi/10.1016/j.oceaneng.2014.09.019&rft_dat=%3Cproquest_cross%3E1660067841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647011132&rft_id=info:pmid/&rft_els_id=S0029801814003436&rfr_iscdi=true