Failure strain formulation via average stress triaxiality of an EH36 high strength steel
The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A n...
Gespeichert in:
Veröffentlicht in: | Ocean engineering 2014-11, Vol.91, p.218-226 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | |
container_start_page | 218 |
container_title | Ocean engineering |
container_volume | 91 |
creator | Choung, Joonmo Nam, Woongshik Lee, Daeyong Song, Chang Yong |
description | The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A number of tensile tests are carried out for flat specimens with different notches from relatively smooth to very sharp levels. Numerical simulations of each specimen are performed via nonlinear finite element analysis (FEA). By means of comparing engineering stress versus strain curves obtained from the tests with simulated ones, failure initiation in numerical simulations are identified. Equivalent plastic strains to fracture are plotted in average stress triaxiality domain, then a new failure strain formula is proposed in relatively low average stress triaxiality region.
•We explores failure strain formulation via tests and simulations of EH36 steel.•We assume the failure strain as the function of average stress triaxiality.•Stress–strain curves are obtained from the simulations for the notched specimens.•Fracture initiation is recognized comparing the simulations with the test results. |
doi_str_mv | 10.1016/j.oceaneng.2014.09.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660067841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029801814003436</els_id><sourcerecordid>1660067841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-537debac6cab47501b5f6efe2193b2be0cef6b76b0dc7ddd6b9c831fce8e56913</originalsourceid><addsrcrecordid>eNqNkE1v2zAMhoVhA5Zl-wuDLgN6sUv6Q5ZuLYp2HVCglw3YTaBlKlHg2K3kBM2_n9N0vbYnEuDzkuAjxHeEHAHV-SYfHdPAwyovAKscTA5oPogF6qbM6qLWH8UCoDCZBtSfxZeUNgCgFJQL8feGQr-LLNMUKQzSj3G762kK4yD3gSTtOdLqecwpySkGegrUh-kgRy9pkNe3pZLrsFo_I8NqOjbM_VfxyVOf-NtLXYo_N9e_r26zu_ufv64u7zJXgZ6yumw6bskpR23V1IBt7RV7LtCUbdEyOPaqbVQLnWu6rlOtcbpE71hzrQyWS3F22vsQx8cdp8luQ3Lc97ORcZcszn-CanT1HrRqABHLYkbVCXVxTCmytw8xbCkeLII9Wrcb-9-6PVq3YOxsfQ7-eLlByVHvIw0upNd0oQ0aXTczd3HieHazDxxtcoEHx12I7CbbjeGtU_8AISKczA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647011132</pqid></control><display><type>article</type><title>Failure strain formulation via average stress triaxiality of an EH36 high strength steel</title><source>Elsevier ScienceDirect Journals</source><creator>Choung, Joonmo ; Nam, Woongshik ; Lee, Daeyong ; Song, Chang Yong</creator><creatorcontrib>Choung, Joonmo ; Nam, Woongshik ; Lee, Daeyong ; Song, Chang Yong</creatorcontrib><description>The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A number of tensile tests are carried out for flat specimens with different notches from relatively smooth to very sharp levels. Numerical simulations of each specimen are performed via nonlinear finite element analysis (FEA). By means of comparing engineering stress versus strain curves obtained from the tests with simulated ones, failure initiation in numerical simulations are identified. Equivalent plastic strains to fracture are plotted in average stress triaxiality domain, then a new failure strain formula is proposed in relatively low average stress triaxiality region.
•We explores failure strain formulation via tests and simulations of EH36 steel.•We assume the failure strain as the function of average stress triaxiality.•Stress–strain curves are obtained from the simulations for the notched specimens.•Fracture initiation is recognized comparing the simulations with the test results.</description><identifier>ISSN: 0029-8018</identifier><identifier>EISSN: 1873-5258</identifier><identifier>DOI: 10.1016/j.oceaneng.2014.09.019</identifier><identifier>CODEN: OCENBQ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Average stress triaxiality ; Average true stress ; Building structure ; Buildings. Public works ; Computer simulation ; Construction (buildings and works) ; EH36 ; Equivalent plastic strain ; Exact sciences and technology ; Failure ; Failure strain ; Finite element method ; Marine ; Materials ; Mathematical models ; Metal structure ; Metallic materials ; Plastic deformation ; Strain ; Stresses ; Triaxiality</subject><ispartof>Ocean engineering, 2014-11, Vol.91, p.218-226</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-537debac6cab47501b5f6efe2193b2be0cef6b76b0dc7ddd6b9c831fce8e56913</citedby><cites>FETCH-LOGICAL-c408t-537debac6cab47501b5f6efe2193b2be0cef6b76b0dc7ddd6b9c831fce8e56913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029801814003436$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28919857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Choung, Joonmo</creatorcontrib><creatorcontrib>Nam, Woongshik</creatorcontrib><creatorcontrib>Lee, Daeyong</creatorcontrib><creatorcontrib>Song, Chang Yong</creatorcontrib><title>Failure strain formulation via average stress triaxiality of an EH36 high strength steel</title><title>Ocean engineering</title><description>The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A number of tensile tests are carried out for flat specimens with different notches from relatively smooth to very sharp levels. Numerical simulations of each specimen are performed via nonlinear finite element analysis (FEA). By means of comparing engineering stress versus strain curves obtained from the tests with simulated ones, failure initiation in numerical simulations are identified. Equivalent plastic strains to fracture are plotted in average stress triaxiality domain, then a new failure strain formula is proposed in relatively low average stress triaxiality region.
•We explores failure strain formulation via tests and simulations of EH36 steel.•We assume the failure strain as the function of average stress triaxiality.•Stress–strain curves are obtained from the simulations for the notched specimens.•Fracture initiation is recognized comparing the simulations with the test results.</description><subject>Applied sciences</subject><subject>Average stress triaxiality</subject><subject>Average true stress</subject><subject>Building structure</subject><subject>Buildings. Public works</subject><subject>Computer simulation</subject><subject>Construction (buildings and works)</subject><subject>EH36</subject><subject>Equivalent plastic strain</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Failure strain</subject><subject>Finite element method</subject><subject>Marine</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Metal structure</subject><subject>Metallic materials</subject><subject>Plastic deformation</subject><subject>Strain</subject><subject>Stresses</subject><subject>Triaxiality</subject><issn>0029-8018</issn><issn>1873-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v2zAMhoVhA5Zl-wuDLgN6sUv6Q5ZuLYp2HVCglw3YTaBlKlHg2K3kBM2_n9N0vbYnEuDzkuAjxHeEHAHV-SYfHdPAwyovAKscTA5oPogF6qbM6qLWH8UCoDCZBtSfxZeUNgCgFJQL8feGQr-LLNMUKQzSj3G762kK4yD3gSTtOdLqecwpySkGegrUh-kgRy9pkNe3pZLrsFo_I8NqOjbM_VfxyVOf-NtLXYo_N9e_r26zu_ufv64u7zJXgZ6yumw6bskpR23V1IBt7RV7LtCUbdEyOPaqbVQLnWu6rlOtcbpE71hzrQyWS3F22vsQx8cdp8luQ3Lc97ORcZcszn-CanT1HrRqABHLYkbVCXVxTCmytw8xbCkeLII9Wrcb-9-6PVq3YOxsfQ7-eLlByVHvIw0upNd0oQ0aXTczd3HieHazDxxtcoEHx12I7CbbjeGtU_8AISKczA</recordid><startdate>20141115</startdate><enddate>20141115</enddate><creator>Choung, Joonmo</creator><creator>Nam, Woongshik</creator><creator>Lee, Daeyong</creator><creator>Song, Chang Yong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141115</creationdate><title>Failure strain formulation via average stress triaxiality of an EH36 high strength steel</title><author>Choung, Joonmo ; Nam, Woongshik ; Lee, Daeyong ; Song, Chang Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-537debac6cab47501b5f6efe2193b2be0cef6b76b0dc7ddd6b9c831fce8e56913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Average stress triaxiality</topic><topic>Average true stress</topic><topic>Building structure</topic><topic>Buildings. Public works</topic><topic>Computer simulation</topic><topic>Construction (buildings and works)</topic><topic>EH36</topic><topic>Equivalent plastic strain</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Failure strain</topic><topic>Finite element method</topic><topic>Marine</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Metal structure</topic><topic>Metallic materials</topic><topic>Plastic deformation</topic><topic>Strain</topic><topic>Stresses</topic><topic>Triaxiality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choung, Joonmo</creatorcontrib><creatorcontrib>Nam, Woongshik</creatorcontrib><creatorcontrib>Lee, Daeyong</creatorcontrib><creatorcontrib>Song, Chang Yong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choung, Joonmo</au><au>Nam, Woongshik</au><au>Lee, Daeyong</au><au>Song, Chang Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure strain formulation via average stress triaxiality of an EH36 high strength steel</atitle><jtitle>Ocean engineering</jtitle><date>2014-11-15</date><risdate>2014</risdate><volume>91</volume><spage>218</spage><epage>226</epage><pages>218-226</pages><issn>0029-8018</issn><eissn>1873-5258</eissn><coden>OCENBQ</coden><abstract>The paper deals with formulation of failure strain according to average stress triaxiality of a low temperature high-tensile steel, EH36, used for mainly arctic marine structures. Stress triaxiality is recognized as one of the important factors for prediction of failure strain of ductile metals. A number of tensile tests are carried out for flat specimens with different notches from relatively smooth to very sharp levels. Numerical simulations of each specimen are performed via nonlinear finite element analysis (FEA). By means of comparing engineering stress versus strain curves obtained from the tests with simulated ones, failure initiation in numerical simulations are identified. Equivalent plastic strains to fracture are plotted in average stress triaxiality domain, then a new failure strain formula is proposed in relatively low average stress triaxiality region.
•We explores failure strain formulation via tests and simulations of EH36 steel.•We assume the failure strain as the function of average stress triaxiality.•Stress–strain curves are obtained from the simulations for the notched specimens.•Fracture initiation is recognized comparing the simulations with the test results.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.oceaneng.2014.09.019</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8018 |
ispartof | Ocean engineering, 2014-11, Vol.91, p.218-226 |
issn | 0029-8018 1873-5258 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660067841 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Average stress triaxiality Average true stress Building structure Buildings. Public works Computer simulation Construction (buildings and works) EH36 Equivalent plastic strain Exact sciences and technology Failure Failure strain Finite element method Marine Materials Mathematical models Metal structure Metallic materials Plastic deformation Strain Stresses Triaxiality |
title | Failure strain formulation via average stress triaxiality of an EH36 high strength steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20strain%20formulation%20via%20average%20stress%20triaxiality%20of%20an%20EH36%20high%20strength%20steel&rft.jtitle=Ocean%20engineering&rft.au=Choung,%20Joonmo&rft.date=2014-11-15&rft.volume=91&rft.spage=218&rft.epage=226&rft.pages=218-226&rft.issn=0029-8018&rft.eissn=1873-5258&rft.coden=OCENBQ&rft_id=info:doi/10.1016/j.oceaneng.2014.09.019&rft_dat=%3Cproquest_cross%3E1660067841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647011132&rft_id=info:pmid/&rft_els_id=S0029801814003436&rfr_iscdi=true |