Separation and composition distribution determination of triblock copolymers by thermal field-flow fractionation

Thermal field-flow fractionation (ThFFF) is used to separate a linear triblock copolymer of polystyrene, poly( tert -butyl acrylate), and poly(methyl methacrylate) by composition. Fractions were collected and subjected to off-line NMR analysis. The resultant mole fraction versus retention time plots...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2013-11, Vol.405 (28), p.9033-9040
Hauptverfasser: Ponyik, Charles A., Wu, David T., Williams, S. Kim Ratanathanawongs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9040
container_issue 28
container_start_page 9033
container_title Analytical and bioanalytical chemistry
container_volume 405
creator Ponyik, Charles A.
Wu, David T.
Williams, S. Kim Ratanathanawongs
description Thermal field-flow fractionation (ThFFF) is used to separate a linear triblock copolymer of polystyrene, poly( tert -butyl acrylate), and poly(methyl methacrylate) by composition. Fractions were collected and subjected to off-line NMR analysis. The resultant mole fraction versus retention time plots for each of the three polymer components confirmed the success of the separation and yielded the composition distribution of the copolymer. The composition distribution was also obtained using a second approach that involved solving a series of equations comprised of polymer thermal diffusion coefficients and quasi-elastic light scattering, differential refractometry, and UV detector responses. Both sets of data showed similar trends of composition variations in each polymer component as a function of retention time. However, discrepancies were observed in the mole fraction values. The ability to compositionally separate and to determine composition distribution of copolymers is important as demonstrated by the presence of diblock impurities in the ThFFF with off-line NMR results.
doi_str_mv 10.1007/s00216-013-7282-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660066898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352752426</galeid><sourcerecordid>A352752426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-6b32f11baededfdb456db7283e17ed99f5c5d5287059a62c387d3a9f7ec5275a3</originalsourceid><addsrcrecordid>eNqFkktrFzEUxYMotrZ-ADcy4MbN1Dwmj1mWYlUouNCuQya5qamZyZjMIP9v30ynFhGkZJHX75zcGw5Cbwg-IxjLDwVjSkSLCWslVbQVz9AxEUS1VHD8_HHd0SP0qpRbjAlXRLxER5T1kmPFj9H8DWaTzRLS1JjJNTaNcyrhfu9CWXIY1n0DC-QxTDuafLNdxWR_Vsmc4mGEXJrh0Cw_KmZi4wNE1_qYfjc-G7up7qWn6IU3scDrh_kEXV9-_H7xub36-unLxflVaznpllYMjHpCBgMOnHdDx4UbapMMiATX955b7jhVEvPeCGqZko6Z3kuwnEpu2Al6v_vOOf1aoSx6DMVCjGaCtBZNhMBYCNWrp1GORfVntHsa7TpFiarOFX33D3qb1jzVnuvbElO-VVCps526MRF0mHxa6m_V4WAMNk3gQz0_Z1tTtKObLdkFNqdSMng95zCafNAE6y0Vek-FrqnQWyr0pnn7UMo6jOAeFX9iUAG6A6VeTTeQ_6r1v653x2_DGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1670251660</pqid></control><display><type>article</type><title>Separation and composition distribution determination of triblock copolymers by thermal field-flow fractionation</title><source>SpringerLink</source><creator>Ponyik, Charles A. ; Wu, David T. ; Williams, S. Kim Ratanathanawongs</creator><creatorcontrib>Ponyik, Charles A. ; Wu, David T. ; Williams, S. Kim Ratanathanawongs</creatorcontrib><description>Thermal field-flow fractionation (ThFFF) is used to separate a linear triblock copolymer of polystyrene, poly( tert -butyl acrylate), and poly(methyl methacrylate) by composition. Fractions were collected and subjected to off-line NMR analysis. The resultant mole fraction versus retention time plots for each of the three polymer components confirmed the success of the separation and yielded the composition distribution of the copolymer. The composition distribution was also obtained using a second approach that involved solving a series of equations comprised of polymer thermal diffusion coefficients and quasi-elastic light scattering, differential refractometry, and UV detector responses. Both sets of data showed similar trends of composition variations in each polymer component as a function of retention time. However, discrepancies were observed in the mole fraction values. The ability to compositionally separate and to determine composition distribution of copolymers is important as demonstrated by the presence of diblock impurities in the ThFFF with off-line NMR results.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-013-7282-6</identifier><identifier>PMID: 23975085</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biochemistry ; Block copolymers ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Chromatography ; Copolymers ; Differential equations ; Diffusion coefficient ; Distillation, Fractional ; Food Science ; Fractionation ; Heat resistance ; Laboratory Medicine ; Light scattering ; Mathematical analysis ; Medical equipment ; Moles ; Monitoring/Environmental Analysis ; Nuclear magnetic resonance ; Polymers ; Refractometry ; Research Paper ; Retention ; Retention time ; Separation ; Separation and Characterization of Natural and Synthetic Macromolecules ; Solvents</subject><ispartof>Analytical and bioanalytical chemistry, 2013-11, Vol.405 (28), p.9033-9040</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-6b32f11baededfdb456db7283e17ed99f5c5d5287059a62c387d3a9f7ec5275a3</citedby><cites>FETCH-LOGICAL-c514t-6b32f11baededfdb456db7283e17ed99f5c5d5287059a62c387d3a9f7ec5275a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-013-7282-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-013-7282-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23975085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ponyik, Charles A.</creatorcontrib><creatorcontrib>Wu, David T.</creatorcontrib><creatorcontrib>Williams, S. Kim Ratanathanawongs</creatorcontrib><title>Separation and composition distribution determination of triblock copolymers by thermal field-flow fractionation</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Thermal field-flow fractionation (ThFFF) is used to separate a linear triblock copolymer of polystyrene, poly( tert -butyl acrylate), and poly(methyl methacrylate) by composition. Fractions were collected and subjected to off-line NMR analysis. The resultant mole fraction versus retention time plots for each of the three polymer components confirmed the success of the separation and yielded the composition distribution of the copolymer. The composition distribution was also obtained using a second approach that involved solving a series of equations comprised of polymer thermal diffusion coefficients and quasi-elastic light scattering, differential refractometry, and UV detector responses. Both sets of data showed similar trends of composition variations in each polymer component as a function of retention time. However, discrepancies were observed in the mole fraction values. The ability to compositionally separate and to determine composition distribution of copolymers is important as demonstrated by the presence of diblock impurities in the ThFFF with off-line NMR results.</description><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Block copolymers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Copolymers</subject><subject>Differential equations</subject><subject>Diffusion coefficient</subject><subject>Distillation, Fractional</subject><subject>Food Science</subject><subject>Fractionation</subject><subject>Heat resistance</subject><subject>Laboratory Medicine</subject><subject>Light scattering</subject><subject>Mathematical analysis</subject><subject>Medical equipment</subject><subject>Moles</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nuclear magnetic resonance</subject><subject>Polymers</subject><subject>Refractometry</subject><subject>Research Paper</subject><subject>Retention</subject><subject>Retention time</subject><subject>Separation</subject><subject>Separation and Characterization of Natural and Synthetic Macromolecules</subject><subject>Solvents</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkktrFzEUxYMotrZ-ADcy4MbN1Dwmj1mWYlUouNCuQya5qamZyZjMIP9v30ynFhGkZJHX75zcGw5Cbwg-IxjLDwVjSkSLCWslVbQVz9AxEUS1VHD8_HHd0SP0qpRbjAlXRLxER5T1kmPFj9H8DWaTzRLS1JjJNTaNcyrhfu9CWXIY1n0DC-QxTDuafLNdxWR_Vsmc4mGEXJrh0Cw_KmZi4wNE1_qYfjc-G7up7qWn6IU3scDrh_kEXV9-_H7xub36-unLxflVaznpllYMjHpCBgMOnHdDx4UbapMMiATX955b7jhVEvPeCGqZko6Z3kuwnEpu2Al6v_vOOf1aoSx6DMVCjGaCtBZNhMBYCNWrp1GORfVntHsa7TpFiarOFX33D3qb1jzVnuvbElO-VVCps526MRF0mHxa6m_V4WAMNk3gQz0_Z1tTtKObLdkFNqdSMng95zCafNAE6y0Vek-FrqnQWyr0pnn7UMo6jOAeFX9iUAG6A6VeTTeQ_6r1v653x2_DGw</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Ponyik, Charles A.</creator><creator>Wu, David T.</creator><creator>Williams, S. Kim Ratanathanawongs</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>20131101</creationdate><title>Separation and composition distribution determination of triblock copolymers by thermal field-flow fractionation</title><author>Ponyik, Charles A. ; Wu, David T. ; Williams, S. Kim Ratanathanawongs</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-6b32f11baededfdb456db7283e17ed99f5c5d5287059a62c387d3a9f7ec5275a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Block copolymers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Copolymers</topic><topic>Differential equations</topic><topic>Diffusion coefficient</topic><topic>Distillation, Fractional</topic><topic>Food Science</topic><topic>Fractionation</topic><topic>Heat resistance</topic><topic>Laboratory Medicine</topic><topic>Light scattering</topic><topic>Mathematical analysis</topic><topic>Medical equipment</topic><topic>Moles</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nuclear magnetic resonance</topic><topic>Polymers</topic><topic>Refractometry</topic><topic>Research Paper</topic><topic>Retention</topic><topic>Retention time</topic><topic>Separation</topic><topic>Separation and Characterization of Natural and Synthetic Macromolecules</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponyik, Charles A.</creatorcontrib><creatorcontrib>Wu, David T.</creatorcontrib><creatorcontrib>Williams, S. Kim Ratanathanawongs</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponyik, Charles A.</au><au>Wu, David T.</au><au>Williams, S. Kim Ratanathanawongs</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation and composition distribution determination of triblock copolymers by thermal field-flow fractionation</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>405</volume><issue>28</issue><spage>9033</spage><epage>9040</epage><pages>9033-9040</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Thermal field-flow fractionation (ThFFF) is used to separate a linear triblock copolymer of polystyrene, poly( tert -butyl acrylate), and poly(methyl methacrylate) by composition. Fractions were collected and subjected to off-line NMR analysis. The resultant mole fraction versus retention time plots for each of the three polymer components confirmed the success of the separation and yielded the composition distribution of the copolymer. The composition distribution was also obtained using a second approach that involved solving a series of equations comprised of polymer thermal diffusion coefficients and quasi-elastic light scattering, differential refractometry, and UV detector responses. Both sets of data showed similar trends of composition variations in each polymer component as a function of retention time. However, discrepancies were observed in the mole fraction values. The ability to compositionally separate and to determine composition distribution of copolymers is important as demonstrated by the presence of diblock impurities in the ThFFF with off-line NMR results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23975085</pmid><doi>10.1007/s00216-013-7282-6</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2013-11, Vol.405 (28), p.9033-9040
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_1660066898
source SpringerLink
subjects Analytical Chemistry
Biochemistry
Block copolymers
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chromatography
Copolymers
Differential equations
Diffusion coefficient
Distillation, Fractional
Food Science
Fractionation
Heat resistance
Laboratory Medicine
Light scattering
Mathematical analysis
Medical equipment
Moles
Monitoring/Environmental Analysis
Nuclear magnetic resonance
Polymers
Refractometry
Research Paper
Retention
Retention time
Separation
Separation and Characterization of Natural and Synthetic Macromolecules
Solvents
title Separation and composition distribution determination of triblock copolymers by thermal field-flow fractionation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20and%20composition%20distribution%20determination%20of%20triblock%20copolymers%20by%20thermal%20field-flow%20fractionation&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Ponyik,%20Charles%20A.&rft.date=2013-11-01&rft.volume=405&rft.issue=28&rft.spage=9033&rft.epage=9040&rft.pages=9033-9040&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-013-7282-6&rft_dat=%3Cgale_proqu%3EA352752426%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1670251660&rft_id=info:pmid/23975085&rft_galeid=A352752426&rfr_iscdi=true