Ab initio investigations of the phase stability in tantalum carbides

Using a variable-composition ab initio evolutionary algorithm, the stability of various tantalum carbide compounds at ambient pressure and at 0K was investigated. The results revealed that TaC, Ta6C5 and Ta2C are the lowest energy configurations, with Ta4C3 and Ta3C2 having slightly higher energies....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2014-11, Vol.80, p.341-349
Hauptverfasser: YU, Xiao-Xiang, WEINBERGER, Christopher R, THOMPSON, Gregory B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue
container_start_page 341
container_title Acta materialia
container_volume 80
creator YU, Xiao-Xiang
WEINBERGER, Christopher R
THOMPSON, Gregory B
description Using a variable-composition ab initio evolutionary algorithm, the stability of various tantalum carbide compounds at ambient pressure and at 0K was investigated. The results revealed that TaC, Ta6C5 and Ta2C are the lowest energy configurations, with Ta4C3 and Ta3C2 having slightly higher energies. The vacancy ordered Ta6C5 phase had three energetically degenerate structures. A competition between the vacancy ordered and stacking fault variation of the phases was seen, with the latter becoming more favorable with lower carbon content. The close formation enthalpy of each stable and metastable phase appears to "frustrate" the carbide in the co-precipitation of multiple phases for substoichiometric compositions. Density functional theory calculations also provided the elastic constants for each of the stable and metastable phases. As the carbon content increased, the elastic constant values increased. This was associated with the change in metallic to more covalent bonding of the carbide from the density of states. The collective results of this computational work provide insight into why specific tantalum carbide phases form and the consequences they have on microstructure and properties.
doi_str_mv 10.1016/j.actamat.2014.07.070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660066077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660066077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-2ebf76064374fef8da7aee14be5405f21230ec6893a89b6010c9d4e52d7625bb3</originalsourceid><addsrcrecordid>eNo9UMtKA0EQHETBGP0EYS-Cl1173ptjiE8IeNHz0Ds7YybsI-5MhPy9IwlCNdUNVd1NEXJLoaJA1cO2Qpuwx1QxoKICnQFnZEZrzUsmJD_PPZeLUgkpLslVjFsAyrSAGXlcNkUYQgpjph8XU_jCPAyxGH2RNq7YbTC6IiZsQhfSIauKhEPCbt8XFqcmtC5ekwuPXXQ3J56Tz-enj9VruX5_eVst16XlNUslc43XCpTgWnjn6xY1OkdF46QA6RllHJxV9YJjvWgUULCLVjjJWq2YbBo-J_fHvbtp_N7nZ00fonVdh4Mb99FQpQByaZ2l8ii10xjj5LzZTaHH6WAomL_UzNacUjN_qRnQGZB9d6cTGC12fsLBhvhvZnVdU6Y4_wXxpG-t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660066077</pqid></control><display><type>article</type><title>Ab initio investigations of the phase stability in tantalum carbides</title><source>Elsevier ScienceDirect Journals Complete</source><creator>YU, Xiao-Xiang ; WEINBERGER, Christopher R ; THOMPSON, Gregory B</creator><creatorcontrib>YU, Xiao-Xiang ; WEINBERGER, Christopher R ; THOMPSON, Gregory B</creatorcontrib><description>Using a variable-composition ab initio evolutionary algorithm, the stability of various tantalum carbide compounds at ambient pressure and at 0K was investigated. The results revealed that TaC, Ta6C5 and Ta2C are the lowest energy configurations, with Ta4C3 and Ta3C2 having slightly higher energies. The vacancy ordered Ta6C5 phase had three energetically degenerate structures. A competition between the vacancy ordered and stacking fault variation of the phases was seen, with the latter becoming more favorable with lower carbon content. The close formation enthalpy of each stable and metastable phase appears to "frustrate" the carbide in the co-precipitation of multiple phases for substoichiometric compositions. Density functional theory calculations also provided the elastic constants for each of the stable and metastable phases. As the carbon content increased, the elastic constant values increased. This was associated with the change in metallic to more covalent bonding of the carbide from the density of states. The collective results of this computational work provide insight into why specific tantalum carbide phases form and the consequences they have on microstructure and properties.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.07.070</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Applied sciences ; Carbides ; Carbon content ; Coprecipitation ; Elastic constants ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Metastable phases ; Stacking faults ; Tantalum carbide ; Vacancies</subject><ispartof>Acta materialia, 2014-11, Vol.80, p.341-349</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-2ebf76064374fef8da7aee14be5405f21230ec6893a89b6010c9d4e52d7625bb3</citedby><cites>FETCH-LOGICAL-c382t-2ebf76064374fef8da7aee14be5405f21230ec6893a89b6010c9d4e52d7625bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28881263$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YU, Xiao-Xiang</creatorcontrib><creatorcontrib>WEINBERGER, Christopher R</creatorcontrib><creatorcontrib>THOMPSON, Gregory B</creatorcontrib><title>Ab initio investigations of the phase stability in tantalum carbides</title><title>Acta materialia</title><description>Using a variable-composition ab initio evolutionary algorithm, the stability of various tantalum carbide compounds at ambient pressure and at 0K was investigated. The results revealed that TaC, Ta6C5 and Ta2C are the lowest energy configurations, with Ta4C3 and Ta3C2 having slightly higher energies. The vacancy ordered Ta6C5 phase had three energetically degenerate structures. A competition between the vacancy ordered and stacking fault variation of the phases was seen, with the latter becoming more favorable with lower carbon content. The close formation enthalpy of each stable and metastable phase appears to "frustrate" the carbide in the co-precipitation of multiple phases for substoichiometric compositions. Density functional theory calculations also provided the elastic constants for each of the stable and metastable phases. As the carbon content increased, the elastic constant values increased. This was associated with the change in metallic to more covalent bonding of the carbide from the density of states. The collective results of this computational work provide insight into why specific tantalum carbide phases form and the consequences they have on microstructure and properties.</description><subject>Applied sciences</subject><subject>Carbides</subject><subject>Carbon content</subject><subject>Coprecipitation</subject><subject>Elastic constants</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Metastable phases</subject><subject>Stacking faults</subject><subject>Tantalum carbide</subject><subject>Vacancies</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKA0EQHETBGP0EYS-Cl1173ptjiE8IeNHz0Ds7YybsI-5MhPy9IwlCNdUNVd1NEXJLoaJA1cO2Qpuwx1QxoKICnQFnZEZrzUsmJD_PPZeLUgkpLslVjFsAyrSAGXlcNkUYQgpjph8XU_jCPAyxGH2RNq7YbTC6IiZsQhfSIauKhEPCbt8XFqcmtC5ekwuPXXQ3J56Tz-enj9VruX5_eVst16XlNUslc43XCpTgWnjn6xY1OkdF46QA6RllHJxV9YJjvWgUULCLVjjJWq2YbBo-J_fHvbtp_N7nZ00fonVdh4Mb99FQpQByaZ2l8ii10xjj5LzZTaHH6WAomL_UzNacUjN_qRnQGZB9d6cTGC12fsLBhvhvZnVdU6Y4_wXxpG-t</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>YU, Xiao-Xiang</creator><creator>WEINBERGER, Christopher R</creator><creator>THOMPSON, Gregory B</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Ab initio investigations of the phase stability in tantalum carbides</title><author>YU, Xiao-Xiang ; WEINBERGER, Christopher R ; THOMPSON, Gregory B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-2ebf76064374fef8da7aee14be5405f21230ec6893a89b6010c9d4e52d7625bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Carbides</topic><topic>Carbon content</topic><topic>Coprecipitation</topic><topic>Elastic constants</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Metastable phases</topic><topic>Stacking faults</topic><topic>Tantalum carbide</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YU, Xiao-Xiang</creatorcontrib><creatorcontrib>WEINBERGER, Christopher R</creatorcontrib><creatorcontrib>THOMPSON, Gregory B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YU, Xiao-Xiang</au><au>WEINBERGER, Christopher R</au><au>THOMPSON, Gregory B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio investigations of the phase stability in tantalum carbides</atitle><jtitle>Acta materialia</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>80</volume><spage>341</spage><epage>349</epage><pages>341-349</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Using a variable-composition ab initio evolutionary algorithm, the stability of various tantalum carbide compounds at ambient pressure and at 0K was investigated. The results revealed that TaC, Ta6C5 and Ta2C are the lowest energy configurations, with Ta4C3 and Ta3C2 having slightly higher energies. The vacancy ordered Ta6C5 phase had three energetically degenerate structures. A competition between the vacancy ordered and stacking fault variation of the phases was seen, with the latter becoming more favorable with lower carbon content. The close formation enthalpy of each stable and metastable phase appears to "frustrate" the carbide in the co-precipitation of multiple phases for substoichiometric compositions. Density functional theory calculations also provided the elastic constants for each of the stable and metastable phases. As the carbon content increased, the elastic constant values increased. This was associated with the change in metallic to more covalent bonding of the carbide from the density of states. The collective results of this computational work provide insight into why specific tantalum carbide phases form and the consequences they have on microstructure and properties.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.actamat.2014.07.070</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2014-11, Vol.80, p.341-349
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1660066077
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Carbides
Carbon content
Coprecipitation
Elastic constants
Exact sciences and technology
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Metastable phases
Stacking faults
Tantalum carbide
Vacancies
title Ab initio investigations of the phase stability in tantalum carbides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20investigations%20of%20the%20phase%20stability%20in%20tantalum%20carbides&rft.jtitle=Acta%20materialia&rft.au=YU,%20Xiao-Xiang&rft.date=2014-11-01&rft.volume=80&rft.spage=341&rft.epage=349&rft.pages=341-349&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.07.070&rft_dat=%3Cproquest_cross%3E1660066077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660066077&rft_id=info:pmid/&rfr_iscdi=true