A wavelet-based autoregressive fuzzy model for forecasting algal blooms

This paper proposes fuzzy models for forecasting the complex behavior of algal blooms. The models are developed through the integration of autoregressive models, the Takagi-Sugeno fuzzy model, and discrete wavelet transform algorithms. The premise parts of the proposed models are determined using th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2014-12, Vol.62, p.1-10
Hauptverfasser: Kim, Yeesock, Shin, Hyun Suk, Plummer, Jeanine D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Environmental modelling & software : with environment data news
container_volume 62
creator Kim, Yeesock
Shin, Hyun Suk
Plummer, Jeanine D.
description This paper proposes fuzzy models for forecasting the complex behavior of algal blooms. The models are developed through the integration of autoregressive models, the Takagi-Sugeno fuzzy model, and discrete wavelet transform algorithms. The premise parts of the proposed models are determined using the subtractive clustering technique and the consequent parts are optimized using weighted least squares. To train and validate the proposed fuzzy models, a large number of data sets were collected from Daecheong reservoir in Geum River in the Republic of Korea. The data include both water quality and hydrological variables. Total nitrogen, total phosphorous, dissolved oxygen, chemical oxygen demand, biochemical oxygen demand, pH, air temperature, water temperature and outflow water were evaluated as input signals while chlorophyll-a was used as an output. It is demonstrated from the simulation that the proposed fuzzy models are effective in forecasting algal blooms. •Complex forecasting models are developed in this paper.•Three intelligent systems for predicting behavior of algal blooms are modeled.•The models are validated using experimental data.
doi_str_mv 10.1016/j.envsoft.2014.08.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660065531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815214002382</els_id><sourcerecordid>1660065531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-81e29b9a5953dcfdc3e6c675121e73c4e66292314315f725a2b25b6fd1e343bd3</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhgdRsF4eQZiN4GbGXCZJZyWleAPBja5DJnNSUtJJzZlW9OlNaXGri8N_Ft-58BXFFSU1JVTeLmsYthjdWDNCm5pM6xxHxYROFa-kYvI491w21ZQKdlqcIS4JIblvJsXjrPw0WwgwVp1B6EuzGWOCRQJEv4XSbb6_v8pV7CGULqZdgTU4-mFRmrAwoexCjCu8KE6cCQiXhzwv3h_u3-ZP1cvr4_N89lLZhogxfwCs7VojWsF763rLQVqpBGUUFLcNSMlaxmnDqXCKCcM6Jjrpegq84V3Pz4ub_d51ih8bwFGvPFoIwQwQN6iplIRIITj9B9ooQjlXKqNij9oUERM4vU5-ZdKXpkTvHOulPjjWO8eaTHWOPHd9OGHQmuCSGazH32HWEq6I3HF3ew6ymq2HpNF6GCz0PuscdR_9H5d-AH9NlGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647013377</pqid></control><display><type>article</type><title>A wavelet-based autoregressive fuzzy model for forecasting algal blooms</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Kim, Yeesock ; Shin, Hyun Suk ; Plummer, Jeanine D.</creator><creatorcontrib>Kim, Yeesock ; Shin, Hyun Suk ; Plummer, Jeanine D.</creatorcontrib><description>This paper proposes fuzzy models for forecasting the complex behavior of algal blooms. The models are developed through the integration of autoregressive models, the Takagi-Sugeno fuzzy model, and discrete wavelet transform algorithms. The premise parts of the proposed models are determined using the subtractive clustering technique and the consequent parts are optimized using weighted least squares. To train and validate the proposed fuzzy models, a large number of data sets were collected from Daecheong reservoir in Geum River in the Republic of Korea. The data include both water quality and hydrological variables. Total nitrogen, total phosphorous, dissolved oxygen, chemical oxygen demand, biochemical oxygen demand, pH, air temperature, water temperature and outflow water were evaluated as input signals while chlorophyll-a was used as an output. It is demonstrated from the simulation that the proposed fuzzy models are effective in forecasting algal blooms. •Complex forecasting models are developed in this paper.•Three intelligent systems for predicting behavior of algal blooms are modeled.•The models are validated using experimental data.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2014.08.014</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algae ; Algal bloom ; Animal, plant and microbial ecology ; Applied ecology ; Autoregressive model ; Biological and medical sciences ; Blooms ; Chlorophyll-a ; Conservation, protection and management of environment and wildlife ; Forecasting ; Fundamental and applied biological sciences. Psychology ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; General aspects ; General aspects. Techniques ; Mathematical models ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Water quality management ; Water temperature ; Wavelet transform</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2014-12, Vol.62, p.1-10</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-81e29b9a5953dcfdc3e6c675121e73c4e66292314315f725a2b25b6fd1e343bd3</citedby><cites>FETCH-LOGICAL-c405t-81e29b9a5953dcfdc3e6c675121e73c4e66292314315f725a2b25b6fd1e343bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2014.08.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29037064$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yeesock</creatorcontrib><creatorcontrib>Shin, Hyun Suk</creatorcontrib><creatorcontrib>Plummer, Jeanine D.</creatorcontrib><title>A wavelet-based autoregressive fuzzy model for forecasting algal blooms</title><title>Environmental modelling &amp; software : with environment data news</title><description>This paper proposes fuzzy models for forecasting the complex behavior of algal blooms. The models are developed through the integration of autoregressive models, the Takagi-Sugeno fuzzy model, and discrete wavelet transform algorithms. The premise parts of the proposed models are determined using the subtractive clustering technique and the consequent parts are optimized using weighted least squares. To train and validate the proposed fuzzy models, a large number of data sets were collected from Daecheong reservoir in Geum River in the Republic of Korea. The data include both water quality and hydrological variables. Total nitrogen, total phosphorous, dissolved oxygen, chemical oxygen demand, biochemical oxygen demand, pH, air temperature, water temperature and outflow water were evaluated as input signals while chlorophyll-a was used as an output. It is demonstrated from the simulation that the proposed fuzzy models are effective in forecasting algal blooms. •Complex forecasting models are developed in this paper.•Three intelligent systems for predicting behavior of algal blooms are modeled.•The models are validated using experimental data.</description><subject>Algae</subject><subject>Algal bloom</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Autoregressive model</subject><subject>Biological and medical sciences</subject><subject>Blooms</subject><subject>Chlorophyll-a</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Forecasting</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Mathematical models</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Water quality management</subject><subject>Water temperature</subject><subject>Wavelet transform</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhgdRsF4eQZiN4GbGXCZJZyWleAPBja5DJnNSUtJJzZlW9OlNaXGri8N_Ft-58BXFFSU1JVTeLmsYthjdWDNCm5pM6xxHxYROFa-kYvI491w21ZQKdlqcIS4JIblvJsXjrPw0WwgwVp1B6EuzGWOCRQJEv4XSbb6_v8pV7CGULqZdgTU4-mFRmrAwoexCjCu8KE6cCQiXhzwv3h_u3-ZP1cvr4_N89lLZhogxfwCs7VojWsF763rLQVqpBGUUFLcNSMlaxmnDqXCKCcM6Jjrpegq84V3Pz4ub_d51ih8bwFGvPFoIwQwQN6iplIRIITj9B9ooQjlXKqNij9oUERM4vU5-ZdKXpkTvHOulPjjWO8eaTHWOPHd9OGHQmuCSGazH32HWEq6I3HF3ew6ymq2HpNF6GCz0PuscdR_9H5d-AH9NlGA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Kim, Yeesock</creator><creator>Shin, Hyun Suk</creator><creator>Plummer, Jeanine D.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141201</creationdate><title>A wavelet-based autoregressive fuzzy model for forecasting algal blooms</title><author>Kim, Yeesock ; Shin, Hyun Suk ; Plummer, Jeanine D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-81e29b9a5953dcfdc3e6c675121e73c4e66292314315f725a2b25b6fd1e343bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algae</topic><topic>Algal bloom</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Autoregressive model</topic><topic>Biological and medical sciences</topic><topic>Blooms</topic><topic>Chlorophyll-a</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Forecasting</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Mathematical models</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Water quality management</topic><topic>Water temperature</topic><topic>Wavelet transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yeesock</creatorcontrib><creatorcontrib>Shin, Hyun Suk</creatorcontrib><creatorcontrib>Plummer, Jeanine D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yeesock</au><au>Shin, Hyun Suk</au><au>Plummer, Jeanine D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A wavelet-based autoregressive fuzzy model for forecasting algal blooms</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>62</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>This paper proposes fuzzy models for forecasting the complex behavior of algal blooms. The models are developed through the integration of autoregressive models, the Takagi-Sugeno fuzzy model, and discrete wavelet transform algorithms. The premise parts of the proposed models are determined using the subtractive clustering technique and the consequent parts are optimized using weighted least squares. To train and validate the proposed fuzzy models, a large number of data sets were collected from Daecheong reservoir in Geum River in the Republic of Korea. The data include both water quality and hydrological variables. Total nitrogen, total phosphorous, dissolved oxygen, chemical oxygen demand, biochemical oxygen demand, pH, air temperature, water temperature and outflow water were evaluated as input signals while chlorophyll-a was used as an output. It is demonstrated from the simulation that the proposed fuzzy models are effective in forecasting algal blooms. •Complex forecasting models are developed in this paper.•Three intelligent systems for predicting behavior of algal blooms are modeled.•The models are validated using experimental data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2014.08.014</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2014-12, Vol.62, p.1-10
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_miscellaneous_1660065531
source ScienceDirect Freedom Collection (Elsevier)
subjects Algae
Algal bloom
Animal, plant and microbial ecology
Applied ecology
Autoregressive model
Biological and medical sciences
Blooms
Chlorophyll-a
Conservation, protection and management of environment and wildlife
Forecasting
Fundamental and applied biological sciences. Psychology
Fuzzy
Fuzzy logic
Fuzzy set theory
General aspects
General aspects. Techniques
Mathematical models
Methods and techniques (sampling, tagging, trapping, modelling...)
Water quality management
Water temperature
Wavelet transform
title A wavelet-based autoregressive fuzzy model for forecasting algal blooms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20wavelet-based%20autoregressive%20fuzzy%20model%20for%20forecasting%20algal%20blooms&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Kim,%20Yeesock&rft.date=2014-12-01&rft.volume=62&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2014.08.014&rft_dat=%3Cproquest_cross%3E1660065531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647013377&rft_id=info:pmid/&rft_els_id=S1364815214002382&rfr_iscdi=true