Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency

Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in medical science 2015-01, Vol.30 (1), p.217-223
Hauptverfasser: de Oliveira, Tabata Santos, Serra, Andrey Jorge, Manchini, Martha Trindade, Bassaneze, Vinicius, Krieger, José Eduardo, de Tarso Camillo de Carvalho, Paulo, Antunes, Daniela Espindola, Bocalini, Danilo Sales, Ferreira Tucci, Paulo José, Silva, José Antônio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 1
container_start_page 217
container_title Lasers in medical science
container_volume 30
creator de Oliveira, Tabata Santos
Serra, Andrey Jorge
Manchini, Martha Trindade
Bassaneze, Vinicius
Krieger, José Eduardo
de Tarso Camillo de Carvalho, Paulo
Antunes, Daniela Espindola
Bocalini, Danilo Sales
Ferreira Tucci, Paulo José
Silva, José Antônio
description Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.
doi_str_mv 10.1007/s10103-014-1646-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660060938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1645780227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-4e43f2b695726ef54bad7aca90cfb6da579413bee245d52c0dd22f643716818f3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEotPCA7BBltiwaODacexkiappi1SJDSB2kWNfd1I5P9jOlLwfD4YzUxBCQurKls93zrWuTpa9ovCOAsj3gQKFIgfKcyq4yOsn2YbyoswF8G9Psw0wUeVVzehJdhrCHQCVghbPsxNW0ppVnG6yn1trUcdARkvceE8c7tERpwJ6Enfo1bSQcSAqRqV3PQ7xnEx-dJ1NUuzG4ZyowZBbHJDgj8ljCOlxDfu6vbo8aIeLR41THD1hq6ZMN416iZgb9N0eDekx4KB3S68cCRF7otG5QPTsYrdXMRHzkFgyzNF369zEGbSd7pJteZE9s8oFfPlwnmVfLrefL67zm09XHy8-3OS6BB5zjrywrBV1KZlAW_JWGam0qkHbVhhVyprTokVkvDQl02AMY1bwQlJR0coWZ9nbY25awfcZQ2z6Lqw_VQOOc2ioEAAC6qJ6BFpyISXU8AiUl7ICxmRC3_yD3o2zT8s4UBwqzuRK0SOl_RiCR9tMvuuVXxoKzVqc5licJhVn9YmmTp7XD8lz26P54_jdlASwIxCSNNyi_2v0f1N_ASb30CU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1644084277</pqid></control><display><type>article</type><title>Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>de Oliveira, Tabata Santos ; Serra, Andrey Jorge ; Manchini, Martha Trindade ; Bassaneze, Vinicius ; Krieger, José Eduardo ; de Tarso Camillo de Carvalho, Paulo ; Antunes, Daniela Espindola ; Bocalini, Danilo Sales ; Ferreira Tucci, Paulo José ; Silva, José Antônio</creator><creatorcontrib>de Oliveira, Tabata Santos ; Serra, Andrey Jorge ; Manchini, Martha Trindade ; Bassaneze, Vinicius ; Krieger, José Eduardo ; de Tarso Camillo de Carvalho, Paulo ; Antunes, Daniela Espindola ; Bocalini, Danilo Sales ; Ferreira Tucci, Paulo José ; Silva, José Antônio</creatorcontrib><description>Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.</description><identifier>ISSN: 0268-8921</identifier><identifier>EISSN: 1435-604X</identifier><identifier>DOI: 10.1007/s10103-014-1646-9</identifier><identifier>PMID: 25192841</identifier><identifier>CODEN: LMSCEZ</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adhesion ; Adipocytes - cytology ; Adipocytes - physiology ; Animals ; Cell adhesion ; Cell adhesion &amp; migration ; Cell Adhesion - radiation effects ; Cell growth ; Cell Proliferation - radiation effects ; Cells, Cultured ; Culture Media ; Dentistry ; Gene expression ; Gene Expression - radiation effects ; Human ; Humans ; Irradiation ; Lasers ; Low-Level Light Therapy ; Medicine ; Medicine &amp; Public Health ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - physiology ; Mesenchymal Stromal Cells - radiation effects ; Optical Devices ; Optics ; Original Article ; Photonics ; Quantum Optics ; Rats ; Receptors ; Stem cells ; Therapy ; Up-Regulation ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor Receptor-2 - genetics ; Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><ispartof>Lasers in medical science, 2015-01, Vol.30 (1), p.217-223</ispartof><rights>Springer-Verlag London 2014</rights><rights>Springer-Verlag London 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-4e43f2b695726ef54bad7aca90cfb6da579413bee245d52c0dd22f643716818f3</citedby><cites>FETCH-LOGICAL-c504t-4e43f2b695726ef54bad7aca90cfb6da579413bee245d52c0dd22f643716818f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10103-014-1646-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10103-014-1646-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25192841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, Tabata Santos</creatorcontrib><creatorcontrib>Serra, Andrey Jorge</creatorcontrib><creatorcontrib>Manchini, Martha Trindade</creatorcontrib><creatorcontrib>Bassaneze, Vinicius</creatorcontrib><creatorcontrib>Krieger, José Eduardo</creatorcontrib><creatorcontrib>de Tarso Camillo de Carvalho, Paulo</creatorcontrib><creatorcontrib>Antunes, Daniela Espindola</creatorcontrib><creatorcontrib>Bocalini, Danilo Sales</creatorcontrib><creatorcontrib>Ferreira Tucci, Paulo José</creatorcontrib><creatorcontrib>Silva, José Antônio</creatorcontrib><title>Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency</title><title>Lasers in medical science</title><addtitle>Lasers Med Sci</addtitle><addtitle>Lasers Med Sci</addtitle><description>Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.</description><subject>Adhesion</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - physiology</subject><subject>Animals</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion - radiation effects</subject><subject>Cell growth</subject><subject>Cell Proliferation - radiation effects</subject><subject>Cells, Cultured</subject><subject>Culture Media</subject><subject>Dentistry</subject><subject>Gene expression</subject><subject>Gene Expression - radiation effects</subject><subject>Human</subject><subject>Humans</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Low-Level Light Therapy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Mesenchymal Stromal Cells - radiation effects</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Article</subject><subject>Photonics</subject><subject>Quantum Optics</subject><subject>Rats</subject><subject>Receptors</subject><subject>Stem cells</subject><subject>Therapy</subject><subject>Up-Regulation</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - genetics</subject><subject>Vascular Endothelial Growth Factor Receptor-2 - metabolism</subject><issn>0268-8921</issn><issn>1435-604X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1u1DAUhSMEotPCA7BBltiwaODacexkiappi1SJDSB2kWNfd1I5P9jOlLwfD4YzUxBCQurKls93zrWuTpa9ovCOAsj3gQKFIgfKcyq4yOsn2YbyoswF8G9Psw0wUeVVzehJdhrCHQCVghbPsxNW0ppVnG6yn1trUcdARkvceE8c7tERpwJ6Enfo1bSQcSAqRqV3PQ7xnEx-dJ1NUuzG4ZyowZBbHJDgj8ljCOlxDfu6vbo8aIeLR41THD1hq6ZMN416iZgb9N0eDekx4KB3S68cCRF7otG5QPTsYrdXMRHzkFgyzNF369zEGbSd7pJteZE9s8oFfPlwnmVfLrefL67zm09XHy8-3OS6BB5zjrywrBV1KZlAW_JWGam0qkHbVhhVyprTokVkvDQl02AMY1bwQlJR0coWZ9nbY25awfcZQ2z6Lqw_VQOOc2ioEAAC6qJ6BFpyISXU8AiUl7ICxmRC3_yD3o2zT8s4UBwqzuRK0SOl_RiCR9tMvuuVXxoKzVqc5licJhVn9YmmTp7XD8lz26P54_jdlASwIxCSNNyi_2v0f1N_ASb30CU</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>de Oliveira, Tabata Santos</creator><creator>Serra, Andrey Jorge</creator><creator>Manchini, Martha Trindade</creator><creator>Bassaneze, Vinicius</creator><creator>Krieger, José Eduardo</creator><creator>de Tarso Camillo de Carvalho, Paulo</creator><creator>Antunes, Daniela Espindola</creator><creator>Bocalini, Danilo Sales</creator><creator>Ferreira Tucci, Paulo José</creator><creator>Silva, José Antônio</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency</title><author>de Oliveira, Tabata Santos ; Serra, Andrey Jorge ; Manchini, Martha Trindade ; Bassaneze, Vinicius ; Krieger, José Eduardo ; de Tarso Camillo de Carvalho, Paulo ; Antunes, Daniela Espindola ; Bocalini, Danilo Sales ; Ferreira Tucci, Paulo José ; Silva, José Antônio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-4e43f2b695726ef54bad7aca90cfb6da579413bee245d52c0dd22f643716818f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adhesion</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - physiology</topic><topic>Animals</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion - radiation effects</topic><topic>Cell growth</topic><topic>Cell Proliferation - radiation effects</topic><topic>Cells, Cultured</topic><topic>Culture Media</topic><topic>Dentistry</topic><topic>Gene expression</topic><topic>Gene Expression - radiation effects</topic><topic>Human</topic><topic>Humans</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Low-Level Light Therapy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Mesenchymal Stromal Cells - radiation effects</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Article</topic><topic>Photonics</topic><topic>Quantum Optics</topic><topic>Rats</topic><topic>Receptors</topic><topic>Stem cells</topic><topic>Therapy</topic><topic>Up-Regulation</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - genetics</topic><topic>Vascular Endothelial Growth Factor Receptor-2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Tabata Santos</creatorcontrib><creatorcontrib>Serra, Andrey Jorge</creatorcontrib><creatorcontrib>Manchini, Martha Trindade</creatorcontrib><creatorcontrib>Bassaneze, Vinicius</creatorcontrib><creatorcontrib>Krieger, José Eduardo</creatorcontrib><creatorcontrib>de Tarso Camillo de Carvalho, Paulo</creatorcontrib><creatorcontrib>Antunes, Daniela Espindola</creatorcontrib><creatorcontrib>Bocalini, Danilo Sales</creatorcontrib><creatorcontrib>Ferreira Tucci, Paulo José</creatorcontrib><creatorcontrib>Silva, José Antônio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Lasers in medical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Tabata Santos</au><au>Serra, Andrey Jorge</au><au>Manchini, Martha Trindade</au><au>Bassaneze, Vinicius</au><au>Krieger, José Eduardo</au><au>de Tarso Camillo de Carvalho, Paulo</au><au>Antunes, Daniela Espindola</au><au>Bocalini, Danilo Sales</au><au>Ferreira Tucci, Paulo José</au><au>Silva, José Antônio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency</atitle><jtitle>Lasers in medical science</jtitle><stitle>Lasers Med Sci</stitle><addtitle>Lasers Med Sci</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>30</volume><issue>1</issue><spage>217</spage><epage>223</epage><pages>217-223</pages><issn>0268-8921</issn><eissn>1435-604X</eissn><coden>LMSCEZ</coden><abstract>Low-level laser therapy (LLLT) has been shown to increase the proliferation of several cell types. We evaluated the effects of LLLT on adhesion, proliferation, and gene expression of vascular endothelial growth factor (VEGF) and type 2 receptor of VEGF (VEGFR2) at mesenchymal stem cells (MSCs) from human (hMSCs) and rat (rMSCs) adipose tissues on nutritional deficiencies. A dose-response curve was performed with cells treated with laser Ga-Al-As (660 nm, 30 mW) at energy of 0.7 to 9 J. Cell adhesion and proliferation were quantified 20, 40, and 60 min after LLLT and 24, 72, and 120 h after cultivation. Gene expression was verified by RT-PCR after 2 h of LLLT. A minor nutritional support caused a significant decrease in proliferation and adhesion of hMSCs and rMSCs. However, at the lowest LLLT dose (0.7 J), we observed a higher proliferation in hMSCs at standard condition shortly after irradiation (24 h). Adhesion was higher in hMSCs cultivated in controlled conditions at higher LLLT doses (3 and 9 J), and rMSCs show a reduction in the adhesion on 1.5 to 9 J. On nutritional deprivation, a 9 J dose was shown to reduce proliferation with 24 h and adhesion to all culture times in rMSCs. VEGF and VEGFR2 were increased after LLLT in both cell types. However, hMSCs under nutritional deprivation showed higher expression of VEGF and its receptor after irradiation with other laser doses. In conclusion, LLLT on human and rat MSCs might upregulate VEGF messenger RNA (mRNA) expression and modulate cell adhesion and proliferation distinctively.</abstract><cop>London</cop><pub>Springer London</pub><pmid>25192841</pmid><doi>10.1007/s10103-014-1646-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-8921
ispartof Lasers in medical science, 2015-01, Vol.30 (1), p.217-223
issn 0268-8921
1435-604X
language eng
recordid cdi_proquest_miscellaneous_1660060938
source MEDLINE; SpringerLink Journals
subjects Adhesion
Adipocytes - cytology
Adipocytes - physiology
Animals
Cell adhesion
Cell adhesion & migration
Cell Adhesion - radiation effects
Cell growth
Cell Proliferation - radiation effects
Cells, Cultured
Culture Media
Dentistry
Gene expression
Gene Expression - radiation effects
Human
Humans
Irradiation
Lasers
Low-Level Light Therapy
Medicine
Medicine & Public Health
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - physiology
Mesenchymal Stromal Cells - radiation effects
Optical Devices
Optics
Original Article
Photonics
Quantum Optics
Rats
Receptors
Stem cells
Therapy
Up-Regulation
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor Receptor-2 - genetics
Vascular Endothelial Growth Factor Receptor-2 - metabolism
title Effects of low level laser therapy on attachment, proliferation, and gene expression of VEGF and VEGF receptor 2 of adipocyte-derived mesenchymal stem cells cultivated under nutritional deficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20low%20level%20laser%20therapy%20on%20attachment,%20proliferation,%20and%20gene%20expression%20of%20VEGF%20and%20VEGF%20receptor%202%20of%20adipocyte-derived%20mesenchymal%20stem%20cells%20cultivated%20under%20nutritional%20deficiency&rft.jtitle=Lasers%20in%20medical%20science&rft.au=de%20Oliveira,%20Tabata%20Santos&rft.date=2015-01-01&rft.volume=30&rft.issue=1&rft.spage=217&rft.epage=223&rft.pages=217-223&rft.issn=0268-8921&rft.eissn=1435-604X&rft.coden=LMSCEZ&rft_id=info:doi/10.1007/s10103-014-1646-9&rft_dat=%3Cproquest_cross%3E1645780227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1644084277&rft_id=info:pmid/25192841&rfr_iscdi=true