Residual Structural Stresses in Glass Bodies

A mathematical model for the quantitative description of the formation of free volume in glass bodies in the process of their inhomogeneous cooling is used to study the influence of the parameters of this process on the distribution of residual structural stresses in glass plates. It is shown that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science (New York, N.Y.) N.Y.), 2014-11, Vol.50 (3), p.406-411
Hauptverfasser: Budz, S. F., Drobenko, B. D., Astashkin, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 3
container_start_page 406
container_title Materials science (New York, N.Y.)
container_volume 50
creator Budz, S. F.
Drobenko, B. D.
Astashkin, V. I.
description A mathematical model for the quantitative description of the formation of free volume in glass bodies in the process of their inhomogeneous cooling is used to study the influence of the parameters of this process on the distribution of residual structural stresses in glass plates. It is shown that the maximal tensile stresses increase with the temperature of the onset of cooling and cooling rate.
doi_str_mv 10.1007/s11003-014-9733-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660058673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A396431185</galeid><sourcerecordid>A396431185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-f906f5a61ec1e0eb4def40f5e0ae81ca9b90d1ba9712ab452e60a4e1bc30c2323</originalsourceid><addsrcrecordid>eNp1kU1L7TAQhoMoqEd_gLsDbu4FqzP5aNOlV_wCQfAD3IU0nR4qPa0304L-eyN1oYLMYobwPMOEV4gDhGMEKE4YU1MZoM7KQqlMb4gdNIXKrDVPm2mG3GZWwtO22GV-huSYwuyIozvitp58t7wf4xTGKc4jMRMv23552Xnm5b-hbon3xFbjO6b9z74QjxfnD2dX2c3t5fXZ6U0WdCnHrCkhb4zPkQISUKVrajQ0hsCTxeDLqoQaK18WKH2ljaQcvCasgoIglVQL8Wfe-xKH_xPx6NYtB-o639MwscM8BzA2Tx9diMMf6PMwxT5d5zABpbQgbaKOZ2rlO3Jt3wxj9CFVTes2DD01bXo_VWWuFaI1Sfj7TUjMSK_jyk_M7vr-7juLMxviwBypcS-xXfv45hDcRzhuDselcNxHOE4nR84OJ7ZfUfxy9q_SO_m7jyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867928028</pqid></control><display><type>article</type><title>Residual Structural Stresses in Glass Bodies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Budz, S. F. ; Drobenko, B. D. ; Astashkin, V. I.</creator><creatorcontrib>Budz, S. F. ; Drobenko, B. D. ; Astashkin, V. I.</creatorcontrib><description>A mathematical model for the quantitative description of the formation of free volume in glass bodies in the process of their inhomogeneous cooling is used to study the influence of the parameters of this process on the distribution of residual structural stresses in glass plates. It is shown that the maximal tensile stresses increase with the temperature of the onset of cooling and cooling rate.</description><identifier>ISSN: 1068-820X</identifier><identifier>EISSN: 1573-885X</identifier><identifier>DOI: 10.1007/s11003-014-9733-4</identifier><identifier>CODEN: MSCIEQ</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cooling rate ; Formations ; Glass ; Materials Science ; Mathematical models ; Plates (structural members) ; Solid Mechanics ; Stress concentration ; Stresses ; Structural Materials ; Tensile stress</subject><ispartof>Materials science (New York, N.Y.), 2014-11, Vol.50 (3), p.406-411</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Materials Science is a copyright of Springer, 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-f906f5a61ec1e0eb4def40f5e0ae81ca9b90d1ba9712ab452e60a4e1bc30c2323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11003-014-9733-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11003-014-9733-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Budz, S. F.</creatorcontrib><creatorcontrib>Drobenko, B. D.</creatorcontrib><creatorcontrib>Astashkin, V. I.</creatorcontrib><title>Residual Structural Stresses in Glass Bodies</title><title>Materials science (New York, N.Y.)</title><addtitle>Mater Sci</addtitle><description>A mathematical model for the quantitative description of the formation of free volume in glass bodies in the process of their inhomogeneous cooling is used to study the influence of the parameters of this process on the distribution of residual structural stresses in glass plates. It is shown that the maximal tensile stresses increase with the temperature of the onset of cooling and cooling rate.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cooling rate</subject><subject>Formations</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Plates (structural members)</subject><subject>Solid Mechanics</subject><subject>Stress concentration</subject><subject>Stresses</subject><subject>Structural Materials</subject><subject>Tensile stress</subject><issn>1068-820X</issn><issn>1573-885X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1L7TAQhoMoqEd_gLsDbu4FqzP5aNOlV_wCQfAD3IU0nR4qPa0304L-eyN1oYLMYobwPMOEV4gDhGMEKE4YU1MZoM7KQqlMb4gdNIXKrDVPm2mG3GZWwtO22GV-huSYwuyIozvitp58t7wf4xTGKc4jMRMv23552Xnm5b-hbon3xFbjO6b9z74QjxfnD2dX2c3t5fXZ6U0WdCnHrCkhb4zPkQISUKVrajQ0hsCTxeDLqoQaK18WKH2ljaQcvCasgoIglVQL8Wfe-xKH_xPx6NYtB-o639MwscM8BzA2Tx9diMMf6PMwxT5d5zABpbQgbaKOZ2rlO3Jt3wxj9CFVTes2DD01bXo_VWWuFaI1Sfj7TUjMSK_jyk_M7vr-7juLMxviwBypcS-xXfv45hDcRzhuDselcNxHOE4nR84OJ7ZfUfxy9q_SO_m7jyA</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Budz, S. F.</creator><creator>Drobenko, B. D.</creator><creator>Astashkin, V. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20141101</creationdate><title>Residual Structural Stresses in Glass Bodies</title><author>Budz, S. F. ; Drobenko, B. D. ; Astashkin, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-f906f5a61ec1e0eb4def40f5e0ae81ca9b90d1ba9712ab452e60a4e1bc30c2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cooling rate</topic><topic>Formations</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Plates (structural members)</topic><topic>Solid Mechanics</topic><topic>Stress concentration</topic><topic>Stresses</topic><topic>Structural Materials</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budz, S. F.</creatorcontrib><creatorcontrib>Drobenko, B. D.</creatorcontrib><creatorcontrib>Astashkin, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Materials science (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budz, S. F.</au><au>Drobenko, B. D.</au><au>Astashkin, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual Structural Stresses in Glass Bodies</atitle><jtitle>Materials science (New York, N.Y.)</jtitle><stitle>Mater Sci</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>50</volume><issue>3</issue><spage>406</spage><epage>411</epage><pages>406-411</pages><issn>1068-820X</issn><eissn>1573-885X</eissn><coden>MSCIEQ</coden><abstract>A mathematical model for the quantitative description of the formation of free volume in glass bodies in the process of their inhomogeneous cooling is used to study the influence of the parameters of this process on the distribution of residual structural stresses in glass plates. It is shown that the maximal tensile stresses increase with the temperature of the onset of cooling and cooling rate.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11003-014-9733-4</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-820X
ispartof Materials science (New York, N.Y.), 2014-11, Vol.50 (3), p.406-411
issn 1068-820X
1573-885X
language eng
recordid cdi_proquest_miscellaneous_1660058673
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Cooling rate
Formations
Glass
Materials Science
Mathematical models
Plates (structural members)
Solid Mechanics
Stress concentration
Stresses
Structural Materials
Tensile stress
title Residual Structural Stresses in Glass Bodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20Structural%20Stresses%20in%20Glass%20Bodies&rft.jtitle=Materials%20science%20(New%20York,%20N.Y.)&rft.au=Budz,%20S.%20F.&rft.date=2014-11-01&rft.volume=50&rft.issue=3&rft.spage=406&rft.epage=411&rft.pages=406-411&rft.issn=1068-820X&rft.eissn=1573-885X&rft.coden=MSCIEQ&rft_id=info:doi/10.1007/s11003-014-9733-4&rft_dat=%3Cgale_proqu%3EA396431185%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867928028&rft_id=info:pmid/&rft_galeid=A396431185&rfr_iscdi=true