Oxygen sensing properties of zinc oxide nanowires, nanorods, and nanoflowers: The effect of morphology and temperature

In this paper, we report the synthesis of one-dimensional zinc oxide (ZnO) nanostructures and the impact of their morphology on oxygen gas sensing properties. The nanostructures were synthesised via chemical vapour deposition using direct oxidation in an electrical furnace. Structural characterisati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2013-10, Vol.545, p.8-12
Hauptverfasser: Minaee, H., Mousavi, S.H., Haratizadeh, H., de Oliveira, P.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 8
container_title Thin solid films
container_volume 545
creator Minaee, H.
Mousavi, S.H.
Haratizadeh, H.
de Oliveira, P.W.
description In this paper, we report the synthesis of one-dimensional zinc oxide (ZnO) nanostructures and the impact of their morphology on oxygen gas sensing properties. The nanostructures were synthesised via chemical vapour deposition using direct oxidation in an electrical furnace. Structural characterisation of the samples was performed with a field emission scanning electron microscope (SEM) and X-ray diffraction (XRD) methods. The SEM images revealed the formation of different sized nanowires, nanorods and nanoflower structures, and the XRD pattern showed hexagonal structures, without any impurities. The gas sensing properties of samples grown on silicon and alumina substrates were measured in different conditions. The samples grown on the alumina substrate showed better gas sensing properties than those grown on the silicon. To determine the optimal sensitivity, the oxygen gas sensing properties of the ZnO nanostructures were measured at different temperatures and gas flows. These nanostructural gas sensors showed high sensitivity at temperatures close to ambient. The effect of the morphology of ZnO nanostructures on their oxygen sensing properties was compared. Between the different synthesised nanostructures, ZnO nanowires exhibited the highest gas sensitivity. •Different morphologies of ZnO such as nanorods and nanoflowers are observed.•The effect of morphology on oxygen sensing properties is presented.•Optimization of oxygen sensing properties of ZnO nanostructures is performed.•Oxygen gas sensors with low working temperature are fabricated.
doi_str_mv 10.1016/j.tsf.2013.05.155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660056905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609013010171</els_id><sourcerecordid>1660056905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9affc5a3c8a4498fe488766e34bba2643f279771eb540e578c7114c7871fbe863</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi1EJULLD-C2FyQO7DJefy6cUEVbpEq9lLPleMepo40d7E3b8OvrJBVHTh5Lz_uO5iHkI4WOApVf191cfNcDZR2IjgrxhiyoVkPbK0bfkgUAh1bCAO_I-1LWAED7ni3I493zfoWxKRhLiKtmm9MW8xywNMk3f0N0TXoOIzbRxvQUMpYvxzGnsU42jsefn9IT5vKtuX_ABr1HNx_im5S3D2lKq_2RnHFTu-28y3hBzrydCn54fc_J76uf95c37e3d9a_LH7etYxLmdrDeO2GZ05bzQXvkWispkfHl0vaSM9-rQSmKS8EBhdJOUcqd0or6JWrJzsnnU2-9688Oy2w2oTicJhsx7YqhUgIIOYCoKD2hLqdSMnqzzWFj895QMAfHZm2qY3NwbECY6rhmPr3W2-Ls5LONLpR_wV7pnjHglft-4rDe-hgwm-ICRodjNepmM6bwny0vIoOTJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660056905</pqid></control><display><type>article</type><title>Oxygen sensing properties of zinc oxide nanowires, nanorods, and nanoflowers: The effect of morphology and temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Minaee, H. ; Mousavi, S.H. ; Haratizadeh, H. ; de Oliveira, P.W.</creator><creatorcontrib>Minaee, H. ; Mousavi, S.H. ; Haratizadeh, H. ; de Oliveira, P.W.</creatorcontrib><description>In this paper, we report the synthesis of one-dimensional zinc oxide (ZnO) nanostructures and the impact of their morphology on oxygen gas sensing properties. The nanostructures were synthesised via chemical vapour deposition using direct oxidation in an electrical furnace. Structural characterisation of the samples was performed with a field emission scanning electron microscope (SEM) and X-ray diffraction (XRD) methods. The SEM images revealed the formation of different sized nanowires, nanorods and nanoflower structures, and the XRD pattern showed hexagonal structures, without any impurities. The gas sensing properties of samples grown on silicon and alumina substrates were measured in different conditions. The samples grown on the alumina substrate showed better gas sensing properties than those grown on the silicon. To determine the optimal sensitivity, the oxygen gas sensing properties of the ZnO nanostructures were measured at different temperatures and gas flows. These nanostructural gas sensors showed high sensitivity at temperatures close to ambient. The effect of the morphology of ZnO nanostructures on their oxygen sensing properties was compared. Between the different synthesised nanostructures, ZnO nanowires exhibited the highest gas sensitivity. •Different morphologies of ZnO such as nanorods and nanoflowers are observed.•The effect of morphology on oxygen sensing properties is presented.•Optimization of oxygen sensing properties of ZnO nanostructures is performed.•Oxygen gas sensors with low working temperature are fabricated.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2013.05.155</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical vapour deposition ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Gas sensitivity ; Gas sensors ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Morphology ; Nanorods ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotubes ; Nanowires ; Other topics in nanoscale materials and structures ; Oxygen gas sensor ; Physics ; Quantum wires ; Scanning electron microscopy ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Silicon substrates ; Zinc oxide ; ZnO nanostructures</subject><ispartof>Thin solid films, 2013-10, Vol.545, p.8-12</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-9affc5a3c8a4498fe488766e34bba2643f279771eb540e578c7114c7871fbe863</citedby><cites>FETCH-LOGICAL-c360t-9affc5a3c8a4498fe488766e34bba2643f279771eb540e578c7114c7871fbe863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0040609013010171$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27823304$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Minaee, H.</creatorcontrib><creatorcontrib>Mousavi, S.H.</creatorcontrib><creatorcontrib>Haratizadeh, H.</creatorcontrib><creatorcontrib>de Oliveira, P.W.</creatorcontrib><title>Oxygen sensing properties of zinc oxide nanowires, nanorods, and nanoflowers: The effect of morphology and temperature</title><title>Thin solid films</title><description>In this paper, we report the synthesis of one-dimensional zinc oxide (ZnO) nanostructures and the impact of their morphology on oxygen gas sensing properties. The nanostructures were synthesised via chemical vapour deposition using direct oxidation in an electrical furnace. Structural characterisation of the samples was performed with a field emission scanning electron microscope (SEM) and X-ray diffraction (XRD) methods. The SEM images revealed the formation of different sized nanowires, nanorods and nanoflower structures, and the XRD pattern showed hexagonal structures, without any impurities. The gas sensing properties of samples grown on silicon and alumina substrates were measured in different conditions. The samples grown on the alumina substrate showed better gas sensing properties than those grown on the silicon. To determine the optimal sensitivity, the oxygen gas sensing properties of the ZnO nanostructures were measured at different temperatures and gas flows. These nanostructural gas sensors showed high sensitivity at temperatures close to ambient. The effect of the morphology of ZnO nanostructures on their oxygen sensing properties was compared. Between the different synthesised nanostructures, ZnO nanowires exhibited the highest gas sensitivity. •Different morphologies of ZnO such as nanorods and nanoflowers are observed.•The effect of morphology on oxygen sensing properties is presented.•Optimization of oxygen sensing properties of ZnO nanostructures is performed.•Oxygen gas sensors with low working temperature are fabricated.</description><subject>Chemical vapour deposition</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Gas sensitivity</subject><subject>Gas sensors</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Nanorods</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotubes</subject><subject>Nanowires</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Oxygen gas sensor</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Scanning electron microscopy</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Silicon substrates</subject><subject>Zinc oxide</subject><subject>ZnO nanostructures</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vEzEQhi1EJULLD-C2FyQO7DJefy6cUEVbpEq9lLPleMepo40d7E3b8OvrJBVHTh5Lz_uO5iHkI4WOApVf191cfNcDZR2IjgrxhiyoVkPbK0bfkgUAh1bCAO_I-1LWAED7ni3I493zfoWxKRhLiKtmm9MW8xywNMk3f0N0TXoOIzbRxvQUMpYvxzGnsU42jsefn9IT5vKtuX_ABr1HNx_im5S3D2lKq_2RnHFTu-28y3hBzrydCn54fc_J76uf95c37e3d9a_LH7etYxLmdrDeO2GZ05bzQXvkWispkfHl0vaSM9-rQSmKS8EBhdJOUcqd0or6JWrJzsnnU2-9688Oy2w2oTicJhsx7YqhUgIIOYCoKD2hLqdSMnqzzWFj895QMAfHZm2qY3NwbECY6rhmPr3W2-Ls5LONLpR_wV7pnjHglft-4rDe-hgwm-ICRodjNepmM6bwny0vIoOTJw</recordid><startdate>20131031</startdate><enddate>20131031</enddate><creator>Minaee, H.</creator><creator>Mousavi, S.H.</creator><creator>Haratizadeh, H.</creator><creator>de Oliveira, P.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131031</creationdate><title>Oxygen sensing properties of zinc oxide nanowires, nanorods, and nanoflowers: The effect of morphology and temperature</title><author>Minaee, H. ; Mousavi, S.H. ; Haratizadeh, H. ; de Oliveira, P.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9affc5a3c8a4498fe488766e34bba2643f279771eb540e578c7114c7871fbe863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical vapour deposition</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Gas sensitivity</topic><topic>Gas sensors</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Nanorods</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotubes</topic><topic>Nanowires</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Oxygen gas sensor</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Scanning electron microscopy</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Silicon substrates</topic><topic>Zinc oxide</topic><topic>ZnO nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minaee, H.</creatorcontrib><creatorcontrib>Mousavi, S.H.</creatorcontrib><creatorcontrib>Haratizadeh, H.</creatorcontrib><creatorcontrib>de Oliveira, P.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minaee, H.</au><au>Mousavi, S.H.</au><au>Haratizadeh, H.</au><au>de Oliveira, P.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen sensing properties of zinc oxide nanowires, nanorods, and nanoflowers: The effect of morphology and temperature</atitle><jtitle>Thin solid films</jtitle><date>2013-10-31</date><risdate>2013</risdate><volume>545</volume><spage>8</spage><epage>12</epage><pages>8-12</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>In this paper, we report the synthesis of one-dimensional zinc oxide (ZnO) nanostructures and the impact of their morphology on oxygen gas sensing properties. The nanostructures were synthesised via chemical vapour deposition using direct oxidation in an electrical furnace. Structural characterisation of the samples was performed with a field emission scanning electron microscope (SEM) and X-ray diffraction (XRD) methods. The SEM images revealed the formation of different sized nanowires, nanorods and nanoflower structures, and the XRD pattern showed hexagonal structures, without any impurities. The gas sensing properties of samples grown on silicon and alumina substrates were measured in different conditions. The samples grown on the alumina substrate showed better gas sensing properties than those grown on the silicon. To determine the optimal sensitivity, the oxygen gas sensing properties of the ZnO nanostructures were measured at different temperatures and gas flows. These nanostructural gas sensors showed high sensitivity at temperatures close to ambient. The effect of the morphology of ZnO nanostructures on their oxygen sensing properties was compared. Between the different synthesised nanostructures, ZnO nanowires exhibited the highest gas sensitivity. •Different morphologies of ZnO such as nanorods and nanoflowers are observed.•The effect of morphology on oxygen sensing properties is presented.•Optimization of oxygen sensing properties of ZnO nanostructures is performed.•Oxygen gas sensors with low working temperature are fabricated.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2013.05.155</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2013-10, Vol.545, p.8-12
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1660056905
source Elsevier ScienceDirect Journals
subjects Chemical vapour deposition
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Gas sensitivity
Gas sensors
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials science
Morphology
Nanorods
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanotubes
Nanowires
Other topics in nanoscale materials and structures
Oxygen gas sensor
Physics
Quantum wires
Scanning electron microscopy
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Silicon substrates
Zinc oxide
ZnO nanostructures
title Oxygen sensing properties of zinc oxide nanowires, nanorods, and nanoflowers: The effect of morphology and temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20sensing%20properties%20of%20zinc%20oxide%20nanowires,%20nanorods,%20and%20nanoflowers:%20The%20effect%20of%20morphology%20and%20temperature&rft.jtitle=Thin%20solid%20films&rft.au=Minaee,%20H.&rft.date=2013-10-31&rft.volume=545&rft.spage=8&rft.epage=12&rft.pages=8-12&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2013.05.155&rft_dat=%3Cproquest_cross%3E1660056905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660056905&rft_id=info:pmid/&rft_els_id=S0040609013010171&rfr_iscdi=true