Evaluating the mechanical behavior of hot rolled Al/alumina composite strips using shear punch test
The evaluation of mechanical properties, like yield and ultimate shear strengths from shear punch tests, is important when availability of material, is limited. A shear punch test setup was built, and the mechanical properties of different strips of hot rolled pure aluminum, post-rolling annealed pu...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2014-11, Vol.618, p.490-495 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The evaluation of mechanical properties, like yield and ultimate shear strengths from shear punch tests, is important when availability of material, is limited. A shear punch test setup was built, and the mechanical properties of different strips of hot rolled pure aluminum, post-rolling annealed pure aluminum, as-milled pure aluminum, and 4wt% Al2O3 were investigated. The materials were first manufactured using powder metallurgy and then processed by hot rolling procedure. Microstructures of the samples were investigated by optical and scanning electron microscopes. It was found that by increasing alumina content in the matrix, shear strength and hardness were increased; also, the percentage of shear elongation was decreased. The results, also, indicated that by applying mechanical milling on pure aluminum powders before the hot rolling process, shear strength and hardness increased more than other samples. Moreover, shear strength was increased by increasing the amount of alumina particles in composite strips. SEM observations demonstrated that the amount of flat surface in shear failure micrographs increased by increasing the amount of shear strength and hardness. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2014.09.037 |