The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation

A numerical study of two-dimensional Schrödinger equation is carried out using the improved complex variable element-free Galerkin (ICVEFG) method. The ICVEFG method involves employment of the improved complex variable moving least-squares (ICVMLS) in the element-free Galerkin (EFG) procedure for nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2014-11, Vol.68 (10), p.1093-1106
Hauptverfasser: Zhang, L.W., Deng, Y.J., Liew, K.M., Cheng, Y.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 10
container_start_page 1093
container_title Computers & mathematics with applications (1987)
container_volume 68
creator Zhang, L.W.
Deng, Y.J.
Liew, K.M.
Cheng, Y.M.
description A numerical study of two-dimensional Schrödinger equation is carried out using the improved complex variable element-free Galerkin (ICVEFG) method. The ICVEFG method involves employment of the improved complex variable moving least-squares (ICVMLS) in the element-free Galerkin (EFG) procedure for numerical approximation. The ICVMLS is used to construct trial functions for the two-dimensional Schrödinger equation in the form of one-dimensional basis function that effectively reduces the number of unknown coefficients. In this study, the applicability of the ICVEFG method is examined through a number of numerical example problems. Convergence studies are carried out for these example problems by varying the number of nodes to ascertain convergent results are achieved as the number of nodes increases. The stability and accuracy of the ICVEFG method are validated by comparing the computed results with the exact solutions.
doi_str_mv 10.1016/j.camwa.2014.07.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660054279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122114003423</els_id><sourcerecordid>1660054279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-b954fa80bde2c870d859b18c528b5ad9eba55b0f9b2733dfb0c7d43c9c8c2c353</originalsourceid><addsrcrecordid>eNp9kLlOxDAURS0EEsPyBTQuaRKe7SxOQYEQmzQSBVBbXl4YD0k82JkBfowf4McIDDXVk57uudI9hJwwyBmw6myZW92_6ZwDK3Koc-DFDpkxWYusriq5S2YgG5kxztk-OUhpCQCF4DAj7nGB1PerGDboqA39qsN3utHRa9MhxQ57HMasjYj0RncYX_xAexwXwdE2RDq-hcz5KZN8GHRHH-wifn06PzxjpPi61uP0PyJ7re4SHv_dQ_J0ffV4eZvN72_uLi_mmRWSjZlpyqLVEoxDbmUNTpaNYdKWXJpSuwaNLksDbWN4LYRrDdjaFcI2VlpuRSkOyem2d5rzusY0qt4ni12nBwzrpFhVAZQFr5spKrZRG0NKEVu1ir7X8UMxUD9O1VL9OlU_ThXUanI6UedbCqcVG49RJetxsOh8RDsqF_y__DeEZYPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660054279</pqid></control><display><type>article</type><title>The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, L.W. ; Deng, Y.J. ; Liew, K.M. ; Cheng, Y.M.</creator><creatorcontrib>Zhang, L.W. ; Deng, Y.J. ; Liew, K.M. ; Cheng, Y.M.</creatorcontrib><description>A numerical study of two-dimensional Schrödinger equation is carried out using the improved complex variable element-free Galerkin (ICVEFG) method. The ICVEFG method involves employment of the improved complex variable moving least-squares (ICVMLS) in the element-free Galerkin (EFG) procedure for numerical approximation. The ICVMLS is used to construct trial functions for the two-dimensional Schrödinger equation in the form of one-dimensional basis function that effectively reduces the number of unknown coefficients. In this study, the applicability of the ICVEFG method is examined through a number of numerical example problems. Convergence studies are carried out for these example problems by varying the number of nodes to ascertain convergent results are achieved as the number of nodes increases. The stability and accuracy of the ICVEFG method are validated by comparing the computed results with the exact solutions.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2014.07.024</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Complex variables ; Convergence ; Galerkin methods ; Galerkin’s procedure ; Improved complex variable element-free Galerkin method ; Mathematical analysis ; Mathematical models ; Schroedinger equation ; Two dimensional ; Unsteady Schrödinger equation</subject><ispartof>Computers &amp; mathematics with applications (1987), 2014-11, Vol.68 (10), p.1093-1106</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-b954fa80bde2c870d859b18c528b5ad9eba55b0f9b2733dfb0c7d43c9c8c2c353</citedby><cites>FETCH-LOGICAL-c381t-b954fa80bde2c870d859b18c528b5ad9eba55b0f9b2733dfb0c7d43c9c8c2c353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2014.07.024$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, L.W.</creatorcontrib><creatorcontrib>Deng, Y.J.</creatorcontrib><creatorcontrib>Liew, K.M.</creatorcontrib><creatorcontrib>Cheng, Y.M.</creatorcontrib><title>The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation</title><title>Computers &amp; mathematics with applications (1987)</title><description>A numerical study of two-dimensional Schrödinger equation is carried out using the improved complex variable element-free Galerkin (ICVEFG) method. The ICVEFG method involves employment of the improved complex variable moving least-squares (ICVMLS) in the element-free Galerkin (EFG) procedure for numerical approximation. The ICVMLS is used to construct trial functions for the two-dimensional Schrödinger equation in the form of one-dimensional basis function that effectively reduces the number of unknown coefficients. In this study, the applicability of the ICVEFG method is examined through a number of numerical example problems. Convergence studies are carried out for these example problems by varying the number of nodes to ascertain convergent results are achieved as the number of nodes increases. The stability and accuracy of the ICVEFG method are validated by comparing the computed results with the exact solutions.</description><subject>Approximation</subject><subject>Complex variables</subject><subject>Convergence</subject><subject>Galerkin methods</subject><subject>Galerkin’s procedure</subject><subject>Improved complex variable element-free Galerkin method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Schroedinger equation</subject><subject>Two dimensional</subject><subject>Unsteady Schrödinger equation</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOxDAURS0EEsPyBTQuaRKe7SxOQYEQmzQSBVBbXl4YD0k82JkBfowf4McIDDXVk57uudI9hJwwyBmw6myZW92_6ZwDK3Koc-DFDpkxWYusriq5S2YgG5kxztk-OUhpCQCF4DAj7nGB1PerGDboqA39qsN3utHRa9MhxQ57HMasjYj0RncYX_xAexwXwdE2RDq-hcz5KZN8GHRHH-wifn06PzxjpPi61uP0PyJ7re4SHv_dQ_J0ffV4eZvN72_uLi_mmRWSjZlpyqLVEoxDbmUNTpaNYdKWXJpSuwaNLksDbWN4LYRrDdjaFcI2VlpuRSkOyem2d5rzusY0qt4ni12nBwzrpFhVAZQFr5spKrZRG0NKEVu1ir7X8UMxUD9O1VL9OlU_ThXUanI6UedbCqcVG49RJetxsOh8RDsqF_y__DeEZYPg</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Zhang, L.W.</creator><creator>Deng, Y.J.</creator><creator>Liew, K.M.</creator><creator>Cheng, Y.M.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201411</creationdate><title>The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation</title><author>Zhang, L.W. ; Deng, Y.J. ; Liew, K.M. ; Cheng, Y.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-b954fa80bde2c870d859b18c528b5ad9eba55b0f9b2733dfb0c7d43c9c8c2c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Complex variables</topic><topic>Convergence</topic><topic>Galerkin methods</topic><topic>Galerkin’s procedure</topic><topic>Improved complex variable element-free Galerkin method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Schroedinger equation</topic><topic>Two dimensional</topic><topic>Unsteady Schrödinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, L.W.</creatorcontrib><creatorcontrib>Deng, Y.J.</creatorcontrib><creatorcontrib>Liew, K.M.</creatorcontrib><creatorcontrib>Cheng, Y.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, L.W.</au><au>Deng, Y.J.</au><au>Liew, K.M.</au><au>Cheng, Y.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2014-11</date><risdate>2014</risdate><volume>68</volume><issue>10</issue><spage>1093</spage><epage>1106</epage><pages>1093-1106</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>A numerical study of two-dimensional Schrödinger equation is carried out using the improved complex variable element-free Galerkin (ICVEFG) method. The ICVEFG method involves employment of the improved complex variable moving least-squares (ICVMLS) in the element-free Galerkin (EFG) procedure for numerical approximation. The ICVMLS is used to construct trial functions for the two-dimensional Schrödinger equation in the form of one-dimensional basis function that effectively reduces the number of unknown coefficients. In this study, the applicability of the ICVEFG method is examined through a number of numerical example problems. Convergence studies are carried out for these example problems by varying the number of nodes to ascertain convergent results are achieved as the number of nodes increases. The stability and accuracy of the ICVEFG method are validated by comparing the computed results with the exact solutions.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2014.07.024</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2014-11, Vol.68 (10), p.1093-1106
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1660054279
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Complex variables
Convergence
Galerkin methods
Galerkin’s procedure
Improved complex variable element-free Galerkin method
Mathematical analysis
Mathematical models
Schroedinger equation
Two dimensional
Unsteady Schrödinger equation
title The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20improved%20complex%20variable%20element-free%20Galerkin%20method%20for%20two-dimensional%20Schr%C3%B6dinger%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhang,%20L.W.&rft.date=2014-11&rft.volume=68&rft.issue=10&rft.spage=1093&rft.epage=1106&rft.pages=1093-1106&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2014.07.024&rft_dat=%3Cproquest_cross%3E1660054279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660054279&rft_id=info:pmid/&rft_els_id=S0898122114003423&rfr_iscdi=true