Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals
An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene gl...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2013-08, Vol.405 (20), p.6405-6415 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6415 |
---|---|
container_issue | 20 |
container_start_page | 6405 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 405 |
creator | Oswald, S. Karsunke, X. Y. Z. Dietrich, R. Märtlbauer, E. Niessner, R. Knopp, D. |
description | An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20,
v
/
v
), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55–80 and 58–79 %, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127–132 and 82–120 % higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography–mass spectrometry and found to be in good agreement.
Figure
Principle of the competitive chemiluminescence ELISA using the microarray chip |
doi_str_mv | 10.1007/s00216-013-6920-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660052787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A344392651</galeid><sourcerecordid>A344392651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-2197f5f1831dccd8b4354f53028fbbc169eb9467e2c13d035b6ecf97287d447e3</originalsourceid><addsrcrecordid>eNqNkk1r3DAQhk1paNK0P6CXIuilFyczkizbxyWkHxDoJT0LWR4tCra0kWzo_vtq2ST9oKVFhxGa553RMG9VvUG4QID2MgNwVDWgqFXPoRbPqjNU2NVcNfD86S75afUy5zsAbDpUL6pTLhQHofqzat6sS5zNQiNLtKVAyQwTsdnbFE1KZl8PJpekn-c1RJOz2TMXE0tm50e2M8lME03sfjVh8c5bs_gYWHRs3tu4xG8-ZOYDs5TITPlVdeJKoNcP8bz6-uH69upTffPl4-erzU1tG8mXmmPfusZhJ3C0duwGKRrpGgG8c8NgUfU09FK1xC2KEUQzKLKub3nXjlK2JM6r98e6uxTvV8qLnn22NE0mUFyzRqUAGt527b9RKaBTqMT_oIDQQ4dNQd_9ht7FNYUyc-ndApcCZf-D2pqJtA8uLsnYQ1G9EVKKvuwRC3XxB6qckcqaYiDny_svAjwKyg5zTuT0LvnZpL1G0Afj6KNxdDGOPhhHi6J5-_DhdZhpfFI8OqUA_AjkkgpbSj9N9Neq3wFLEcwO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1670243149</pqid></control><display><type>article</type><title>Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Oswald, S. ; Karsunke, X. Y. Z. ; Dietrich, R. ; Märtlbauer, E. ; Niessner, R. ; Knopp, D.</creator><creatorcontrib>Oswald, S. ; Karsunke, X. Y. Z. ; Dietrich, R. ; Märtlbauer, E. ; Niessner, R. ; Knopp, D.</creatorcontrib><description>An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20,
v
/
v
), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55–80 and 58–79 %, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127–132 and 82–120 % higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography–mass spectrometry and found to be in good agreement.
Figure
Principle of the competitive chemiluminescence ELISA using the microarray chip</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-013-6920-3</identifier><identifier>PMID: 23620369</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aflatoxins ; Agricultural commodities ; Airborne sensing ; Analytical Chemistry ; Antibodies ; Automation ; Biochemistry ; Biomimetics ; Carcinogens ; Cereals ; Characterization and Evaluation of Materials ; Chemiluminescence ; Chemistry ; Chemistry and Materials Science ; Chips ; Chromatography ; Crystals ; Deoxynivalenol ; Edible Grain - chemistry ; Food ; Food Science ; Fourier transforms ; Grain ; Identification and classification ; Immunoassay ; Immunoassay - methods ; Laboratory Medicine ; Liquid chromatography ; Luminescent Measurements - methods ; Mass spectrometry ; Methods ; Monitoring/Environmental Analysis ; Mycotoxins ; Mycotoxins - chemistry ; Ochratoxin A ; Protein Array Analysis - methods ; Research Paper ; Scientific imaging ; Testing ; Triticum aestivum ; Wheat ; Zea mays</subject><ispartof>Analytical and bioanalytical chemistry, 2013-08, Vol.405 (20), p.6405-6415</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-2197f5f1831dccd8b4354f53028fbbc169eb9467e2c13d035b6ecf97287d447e3</citedby><cites>FETCH-LOGICAL-c542t-2197f5f1831dccd8b4354f53028fbbc169eb9467e2c13d035b6ecf97287d447e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-013-6920-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-013-6920-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23620369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oswald, S.</creatorcontrib><creatorcontrib>Karsunke, X. Y. Z.</creatorcontrib><creatorcontrib>Dietrich, R.</creatorcontrib><creatorcontrib>Märtlbauer, E.</creatorcontrib><creatorcontrib>Niessner, R.</creatorcontrib><creatorcontrib>Knopp, D.</creatorcontrib><title>Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20,
v
/
v
), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55–80 and 58–79 %, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127–132 and 82–120 % higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography–mass spectrometry and found to be in good agreement.
Figure
Principle of the competitive chemiluminescence ELISA using the microarray chip</description><subject>Aflatoxins</subject><subject>Agricultural commodities</subject><subject>Airborne sensing</subject><subject>Analytical Chemistry</subject><subject>Antibodies</subject><subject>Automation</subject><subject>Biochemistry</subject><subject>Biomimetics</subject><subject>Carcinogens</subject><subject>Cereals</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemiluminescence</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chips</subject><subject>Chromatography</subject><subject>Crystals</subject><subject>Deoxynivalenol</subject><subject>Edible Grain - chemistry</subject><subject>Food</subject><subject>Food Science</subject><subject>Fourier transforms</subject><subject>Grain</subject><subject>Identification and classification</subject><subject>Immunoassay</subject><subject>Immunoassay - methods</subject><subject>Laboratory Medicine</subject><subject>Liquid chromatography</subject><subject>Luminescent Measurements - methods</subject><subject>Mass spectrometry</subject><subject>Methods</subject><subject>Monitoring/Environmental Analysis</subject><subject>Mycotoxins</subject><subject>Mycotoxins - chemistry</subject><subject>Ochratoxin A</subject><subject>Protein Array Analysis - methods</subject><subject>Research Paper</subject><subject>Scientific imaging</subject><subject>Testing</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><subject>Zea mays</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1r3DAQhk1paNK0P6CXIuilFyczkizbxyWkHxDoJT0LWR4tCra0kWzo_vtq2ST9oKVFhxGa553RMG9VvUG4QID2MgNwVDWgqFXPoRbPqjNU2NVcNfD86S75afUy5zsAbDpUL6pTLhQHofqzat6sS5zNQiNLtKVAyQwTsdnbFE1KZl8PJpekn-c1RJOz2TMXE0tm50e2M8lME03sfjVh8c5bs_gYWHRs3tu4xG8-ZOYDs5TITPlVdeJKoNcP8bz6-uH69upTffPl4-erzU1tG8mXmmPfusZhJ3C0duwGKRrpGgG8c8NgUfU09FK1xC2KEUQzKLKub3nXjlK2JM6r98e6uxTvV8qLnn22NE0mUFyzRqUAGt527b9RKaBTqMT_oIDQQ4dNQd_9ht7FNYUyc-ndApcCZf-D2pqJtA8uLsnYQ1G9EVKKvuwRC3XxB6qckcqaYiDny_svAjwKyg5zTuT0LvnZpL1G0Afj6KNxdDGOPhhHi6J5-_DhdZhpfFI8OqUA_AjkkgpbSj9N9Neq3wFLEcwO</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Oswald, S.</creator><creator>Karsunke, X. Y. Z.</creator><creator>Dietrich, R.</creator><creator>Märtlbauer, E.</creator><creator>Niessner, R.</creator><creator>Knopp, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>20130801</creationdate><title>Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals</title><author>Oswald, S. ; Karsunke, X. Y. Z. ; Dietrich, R. ; Märtlbauer, E. ; Niessner, R. ; Knopp, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-2197f5f1831dccd8b4354f53028fbbc169eb9467e2c13d035b6ecf97287d447e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aflatoxins</topic><topic>Agricultural commodities</topic><topic>Airborne sensing</topic><topic>Analytical Chemistry</topic><topic>Antibodies</topic><topic>Automation</topic><topic>Biochemistry</topic><topic>Biomimetics</topic><topic>Carcinogens</topic><topic>Cereals</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemiluminescence</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chips</topic><topic>Chromatography</topic><topic>Crystals</topic><topic>Deoxynivalenol</topic><topic>Edible Grain - chemistry</topic><topic>Food</topic><topic>Food Science</topic><topic>Fourier transforms</topic><topic>Grain</topic><topic>Identification and classification</topic><topic>Immunoassay</topic><topic>Immunoassay - methods</topic><topic>Laboratory Medicine</topic><topic>Liquid chromatography</topic><topic>Luminescent Measurements - methods</topic><topic>Mass spectrometry</topic><topic>Methods</topic><topic>Monitoring/Environmental Analysis</topic><topic>Mycotoxins</topic><topic>Mycotoxins - chemistry</topic><topic>Ochratoxin A</topic><topic>Protein Array Analysis - methods</topic><topic>Research Paper</topic><topic>Scientific imaging</topic><topic>Testing</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oswald, S.</creatorcontrib><creatorcontrib>Karsunke, X. Y. Z.</creatorcontrib><creatorcontrib>Dietrich, R.</creatorcontrib><creatorcontrib>Märtlbauer, E.</creatorcontrib><creatorcontrib>Niessner, R.</creatorcontrib><creatorcontrib>Knopp, D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oswald, S.</au><au>Karsunke, X. Y. Z.</au><au>Dietrich, R.</au><au>Märtlbauer, E.</au><au>Niessner, R.</au><au>Knopp, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>405</volume><issue>20</issue><spage>6405</spage><epage>6415</epage><pages>6405-6415</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>An automated flow-through multi-mycotoxin immunoassay using the stand-alone Munich Chip Reader 3 platform and reusable biochips was developed and evaluated. This technology combines a unique microarray, prepared by covalent immobilization of target analytes or derivatives on diamino-poly(ethylene glycol) functionalized glass slides, with a dedicated chemiluminescence readout by a CCD camera. In a first stage, we aimed for the parallel detection of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisins in cereal samples in a competitive indirect immunoassay format. The method combines sample extraction with methanol/water (80:20,
v
/
v
), extract filtration and dilution, and immunodetection using horseradish peroxidase-labeled anti-mouse IgG antibodies. The total analysis time, including extraction, extract dilution, measurement, and surface regeneration, was 19 min. The prepared microarray chip was reusable for at least 50 times. Oat extract revealed itself as a representative sample matrix for preparation of mycotoxin standards and determination of different types of cereals such as oat, wheat, rye, and maize polenta at relevant concentrations according to the European Commission regulation. The recovery rates of fortified samples in different matrices, with 55–80 and 58–79 %, were lower for the better water-soluble fumonisin B1 and deoxynivalenol and with 127–132 and 82–120 % higher for the more unpolar aflatoxins and ochratoxin A, respectively. Finally, the results of wheat samples which were naturally contaminated with deoxynivalenol were critically compared in an interlaboratory comparison with data obtained from microtiter plate ELISA, aokinmycontrol® method, and liquid chromatography–mass spectrometry and found to be in good agreement.
Figure
Principle of the competitive chemiluminescence ELISA using the microarray chip</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23620369</pmid><doi>10.1007/s00216-013-6920-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2013-08, Vol.405 (20), p.6405-6415 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660052787 |
source | MEDLINE; SpringerLink Journals |
subjects | Aflatoxins Agricultural commodities Airborne sensing Analytical Chemistry Antibodies Automation Biochemistry Biomimetics Carcinogens Cereals Characterization and Evaluation of Materials Chemiluminescence Chemistry Chemistry and Materials Science Chips Chromatography Crystals Deoxynivalenol Edible Grain - chemistry Food Food Science Fourier transforms Grain Identification and classification Immunoassay Immunoassay - methods Laboratory Medicine Liquid chromatography Luminescent Measurements - methods Mass spectrometry Methods Monitoring/Environmental Analysis Mycotoxins Mycotoxins - chemistry Ochratoxin A Protein Array Analysis - methods Research Paper Scientific imaging Testing Triticum aestivum Wheat Zea mays |
title | Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20regenerable%20microarray-based%20immunoassay%20for%20rapid%20parallel%20quantification%20of%20mycotoxins%20in%20cereals&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Oswald,%20S.&rft.date=2013-08-01&rft.volume=405&rft.issue=20&rft.spage=6405&rft.epage=6415&rft.pages=6405-6415&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-013-6920-3&rft_dat=%3Cgale_proqu%3EA344392651%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1670243149&rft_id=info:pmid/23620369&rft_galeid=A344392651&rfr_iscdi=true |