Bioremediation potential of microorganisms derived from petroleum reservoirs

•Metagenomic clones could degrade saturated hydrocarbons up to 47% in petroleum.•Metagenomic clones consumed more than 90% of some aromatic portion after 21 days.•Isolated strains could degrade n-alkanes with rates up to 99% after 21 days.•Bacterial strains and metagenomic clones showed high petrole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine pollution bulletin 2014-12, Vol.89 (1-2), p.191-200
Hauptverfasser: Dellagnezze, Bruna Martins, de Sousa, Gabriel Vasconcelos, Martins, Laercio Lopes, Domingos, Daniela Ferreira, Limache, Elmer E.G., de Vasconcellos, Suzan Pantaroto, da Cruz, Georgiana Feitosa, de Oliveira, Valéria Maia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 1-2
container_start_page 191
container_title Marine pollution bulletin
container_volume 89
creator Dellagnezze, Bruna Martins
de Sousa, Gabriel Vasconcelos
Martins, Laercio Lopes
Domingos, Daniela Ferreira
Limache, Elmer E.G.
de Vasconcellos, Suzan Pantaroto
da Cruz, Georgiana Feitosa
de Oliveira, Valéria Maia
description •Metagenomic clones could degrade saturated hydrocarbons up to 47% in petroleum.•Metagenomic clones consumed more than 90% of some aromatic portion after 21 days.•Isolated strains could degrade n-alkanes with rates up to 99% after 21 days.•Bacterial strains and metagenomic clones showed high petroleum degradation potential. Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21days. Gas Chromatography–Flame Ionization Detector (GC–FID) and Gas Chromatography-Mass Spectrometry (GC–MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.
doi_str_mv 10.1016/j.marpolbul.2014.10.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660050795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025326X14006717</els_id><sourcerecordid>1647014875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-79366abe544586ae6ec6e84c91fea3118b07dcc729f08910f1d6302ffb4cc2e3</originalsourceid><addsrcrecordid>eNqNkc1O3DAURq2qqAwDr9BmU4lNptd2bCdLiiggjdQNC3aW41xXHiVxsJOReHs8mildlpWl63N_9B1CvlHYUKDyx24zmDiFvl36DQNa5eoGgH8iK1qrpuRc8s9kBcBEyZl8PicXKe0AQDFFv5BzJiqhagorsv3pQ8QBO29mH8ZiCjOOszd9EVwxeBtDiH_M6NOQig6j32NXuBiGYsI5hh6XoYiYMO6Dj-mSnDnTJ7w6vWvy9Ovu6fah3P6-f7y92ZZWMDqXquFSmhZFVYlaGpRoJdaVbahDwymtW1CdtYo1DuqGgqOd5MCcaytrGfI1uT6OnWJ4WTDNevDJYt-bEcOSNJUSQIBqxAfQSuX4avURlFc5PpGvXxN1RHM8KUV0eoo-C3nVFPTBj97pdz_64Ofwkf3kzq-nJUubQ3_v-yskA99PgEnW9C6a0fr0j2uAUwUyczdHDnPOe49RJ-txtFlkRDvrLvj_HvMGg8azRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1634727579</pqid></control><display><type>article</type><title>Bioremediation potential of microorganisms derived from petroleum reservoirs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Dellagnezze, Bruna Martins ; de Sousa, Gabriel Vasconcelos ; Martins, Laercio Lopes ; Domingos, Daniela Ferreira ; Limache, Elmer E.G. ; de Vasconcellos, Suzan Pantaroto ; da Cruz, Georgiana Feitosa ; de Oliveira, Valéria Maia</creator><creatorcontrib>Dellagnezze, Bruna Martins ; de Sousa, Gabriel Vasconcelos ; Martins, Laercio Lopes ; Domingos, Daniela Ferreira ; Limache, Elmer E.G. ; de Vasconcellos, Suzan Pantaroto ; da Cruz, Georgiana Feitosa ; de Oliveira, Valéria Maia</creatorcontrib><description>•Metagenomic clones could degrade saturated hydrocarbons up to 47% in petroleum.•Metagenomic clones consumed more than 90% of some aromatic portion after 21 days.•Isolated strains could degrade n-alkanes with rates up to 99% after 21 days.•Bacterial strains and metagenomic clones showed high petroleum degradation potential. Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21days. Gas Chromatography–Flame Ionization Detector (GC–FID) and Gas Chromatography-Mass Spectrometry (GC–MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.</description><identifier>ISSN: 0025-326X</identifier><identifier>EISSN: 1879-3363</identifier><identifier>DOI: 10.1016/j.marpolbul.2014.10.003</identifier><identifier>PMID: 25457810</identifier><identifier>CODEN: MPNBAZ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alkanes - metabolism ; Animal and plant ecology ; Animal, plant and microbial ecology ; Applied ecology ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Biodegradation of pollutants ; Biodegradation, Environmental ; Biological and medical sciences ; Bioremediation ; Biotechnology ; Brazil ; Chromatography, Gas ; Crude oil ; Cytochrome P-450 CYP4A - genetics ; Degradation ; Dietzia maris ; Ecotoxicology, biological effects of pollution ; Environment and pollution ; Fundamental and applied biological sciences. Psychology ; Gas chromatography ; Gas Chromatography-Mass Spectrometry ; Hydrocarbons, Aromatic - metabolism ; Industrial applications and implications. Economical aspects ; Marine ; Marine and brackish environment ; Metagenomic clones ; Microbial Consortia - genetics ; Microbial Consortia - physiology ; Micrococcus ; Micrococcus - metabolism ; Oil and Gas Fields - microbiology ; Petroleum - analysis ; Petroleum - metabolism ; Petroleum biodegradation ; Phenanthrene ; Phenanthrenes - metabolism ; Pools ; Reservoirs ; Sea water ecosystems ; Seawater ; Seawater - microbiology ; Strain ; Synecology</subject><ispartof>Marine pollution bulletin, 2014-12, Vol.89 (1-2), p.191-200</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-79366abe544586ae6ec6e84c91fea3118b07dcc729f08910f1d6302ffb4cc2e3</citedby><cites>FETCH-LOGICAL-c521t-79366abe544586ae6ec6e84c91fea3118b07dcc729f08910f1d6302ffb4cc2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025326X14006717$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29031706$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25457810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dellagnezze, Bruna Martins</creatorcontrib><creatorcontrib>de Sousa, Gabriel Vasconcelos</creatorcontrib><creatorcontrib>Martins, Laercio Lopes</creatorcontrib><creatorcontrib>Domingos, Daniela Ferreira</creatorcontrib><creatorcontrib>Limache, Elmer E.G.</creatorcontrib><creatorcontrib>de Vasconcellos, Suzan Pantaroto</creatorcontrib><creatorcontrib>da Cruz, Georgiana Feitosa</creatorcontrib><creatorcontrib>de Oliveira, Valéria Maia</creatorcontrib><title>Bioremediation potential of microorganisms derived from petroleum reservoirs</title><title>Marine pollution bulletin</title><addtitle>Mar Pollut Bull</addtitle><description>•Metagenomic clones could degrade saturated hydrocarbons up to 47% in petroleum.•Metagenomic clones consumed more than 90% of some aromatic portion after 21 days.•Isolated strains could degrade n-alkanes with rates up to 99% after 21 days.•Bacterial strains and metagenomic clones showed high petroleum degradation potential. Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21days. Gas Chromatography–Flame Ionization Detector (GC–FID) and Gas Chromatography-Mass Spectrometry (GC–MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.</description><subject>Alkanes - metabolism</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation of pollutants</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Brazil</subject><subject>Chromatography, Gas</subject><subject>Crude oil</subject><subject>Cytochrome P-450 CYP4A - genetics</subject><subject>Degradation</subject><subject>Dietzia maris</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Environment and pollution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Hydrocarbons, Aromatic - metabolism</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Marine</subject><subject>Marine and brackish environment</subject><subject>Metagenomic clones</subject><subject>Microbial Consortia - genetics</subject><subject>Microbial Consortia - physiology</subject><subject>Micrococcus</subject><subject>Micrococcus - metabolism</subject><subject>Oil and Gas Fields - microbiology</subject><subject>Petroleum - analysis</subject><subject>Petroleum - metabolism</subject><subject>Petroleum biodegradation</subject><subject>Phenanthrene</subject><subject>Phenanthrenes - metabolism</subject><subject>Pools</subject><subject>Reservoirs</subject><subject>Sea water ecosystems</subject><subject>Seawater</subject><subject>Seawater - microbiology</subject><subject>Strain</subject><subject>Synecology</subject><issn>0025-326X</issn><issn>1879-3363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3DAURq2qqAwDr9BmU4lNptd2bCdLiiggjdQNC3aW41xXHiVxsJOReHs8mildlpWl63N_9B1CvlHYUKDyx24zmDiFvl36DQNa5eoGgH8iK1qrpuRc8s9kBcBEyZl8PicXKe0AQDFFv5BzJiqhagorsv3pQ8QBO29mH8ZiCjOOszd9EVwxeBtDiH_M6NOQig6j32NXuBiGYsI5hh6XoYiYMO6Dj-mSnDnTJ7w6vWvy9Ovu6fah3P6-f7y92ZZWMDqXquFSmhZFVYlaGpRoJdaVbahDwymtW1CdtYo1DuqGgqOd5MCcaytrGfI1uT6OnWJ4WTDNevDJYt-bEcOSNJUSQIBqxAfQSuX4avURlFc5PpGvXxN1RHM8KUV0eoo-C3nVFPTBj97pdz_64Ofwkf3kzq-nJUubQ3_v-yskA99PgEnW9C6a0fr0j2uAUwUyczdHDnPOe49RJ-txtFlkRDvrLvj_HvMGg8azRA</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Dellagnezze, Bruna Martins</creator><creator>de Sousa, Gabriel Vasconcelos</creator><creator>Martins, Laercio Lopes</creator><creator>Domingos, Daniela Ferreira</creator><creator>Limache, Elmer E.G.</creator><creator>de Vasconcellos, Suzan Pantaroto</creator><creator>da Cruz, Georgiana Feitosa</creator><creator>de Oliveira, Valéria Maia</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7TV</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>KR7</scope></search><sort><creationdate>20141215</creationdate><title>Bioremediation potential of microorganisms derived from petroleum reservoirs</title><author>Dellagnezze, Bruna Martins ; de Sousa, Gabriel Vasconcelos ; Martins, Laercio Lopes ; Domingos, Daniela Ferreira ; Limache, Elmer E.G. ; de Vasconcellos, Suzan Pantaroto ; da Cruz, Georgiana Feitosa ; de Oliveira, Valéria Maia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-79366abe544586ae6ec6e84c91fea3118b07dcc729f08910f1d6302ffb4cc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alkanes - metabolism</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation of pollutants</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Brazil</topic><topic>Chromatography, Gas</topic><topic>Crude oil</topic><topic>Cytochrome P-450 CYP4A - genetics</topic><topic>Degradation</topic><topic>Dietzia maris</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Environment and pollution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Hydrocarbons, Aromatic - metabolism</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Marine</topic><topic>Marine and brackish environment</topic><topic>Metagenomic clones</topic><topic>Microbial Consortia - genetics</topic><topic>Microbial Consortia - physiology</topic><topic>Micrococcus</topic><topic>Micrococcus - metabolism</topic><topic>Oil and Gas Fields - microbiology</topic><topic>Petroleum - analysis</topic><topic>Petroleum - metabolism</topic><topic>Petroleum biodegradation</topic><topic>Phenanthrene</topic><topic>Phenanthrenes - metabolism</topic><topic>Pools</topic><topic>Reservoirs</topic><topic>Sea water ecosystems</topic><topic>Seawater</topic><topic>Seawater - microbiology</topic><topic>Strain</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dellagnezze, Bruna Martins</creatorcontrib><creatorcontrib>de Sousa, Gabriel Vasconcelos</creatorcontrib><creatorcontrib>Martins, Laercio Lopes</creatorcontrib><creatorcontrib>Domingos, Daniela Ferreira</creatorcontrib><creatorcontrib>Limache, Elmer E.G.</creatorcontrib><creatorcontrib>de Vasconcellos, Suzan Pantaroto</creatorcontrib><creatorcontrib>da Cruz, Georgiana Feitosa</creatorcontrib><creatorcontrib>de Oliveira, Valéria Maia</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Pollution Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Marine pollution bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dellagnezze, Bruna Martins</au><au>de Sousa, Gabriel Vasconcelos</au><au>Martins, Laercio Lopes</au><au>Domingos, Daniela Ferreira</au><au>Limache, Elmer E.G.</au><au>de Vasconcellos, Suzan Pantaroto</au><au>da Cruz, Georgiana Feitosa</au><au>de Oliveira, Valéria Maia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioremediation potential of microorganisms derived from petroleum reservoirs</atitle><jtitle>Marine pollution bulletin</jtitle><addtitle>Mar Pollut Bull</addtitle><date>2014-12-15</date><risdate>2014</risdate><volume>89</volume><issue>1-2</issue><spage>191</spage><epage>200</epage><pages>191-200</pages><issn>0025-326X</issn><eissn>1879-3363</eissn><coden>MPNBAZ</coden><abstract>•Metagenomic clones could degrade saturated hydrocarbons up to 47% in petroleum.•Metagenomic clones consumed more than 90% of some aromatic portion after 21 days.•Isolated strains could degrade n-alkanes with rates up to 99% after 21 days.•Bacterial strains and metagenomic clones showed high petroleum degradation potential. Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21days. Gas Chromatography–Flame Ionization Detector (GC–FID) and Gas Chromatography-Mass Spectrometry (GC–MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>25457810</pmid><doi>10.1016/j.marpolbul.2014.10.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-326X
ispartof Marine pollution bulletin, 2014-12, Vol.89 (1-2), p.191-200
issn 0025-326X
1879-3363
language eng
recordid cdi_proquest_miscellaneous_1660050795
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Alkanes - metabolism
Animal and plant ecology
Animal, plant and microbial ecology
Applied ecology
Bacteria
Bacteria - genetics
Bacteria - metabolism
Biodegradation of pollutants
Biodegradation, Environmental
Biological and medical sciences
Bioremediation
Biotechnology
Brazil
Chromatography, Gas
Crude oil
Cytochrome P-450 CYP4A - genetics
Degradation
Dietzia maris
Ecotoxicology, biological effects of pollution
Environment and pollution
Fundamental and applied biological sciences. Psychology
Gas chromatography
Gas Chromatography-Mass Spectrometry
Hydrocarbons, Aromatic - metabolism
Industrial applications and implications. Economical aspects
Marine
Marine and brackish environment
Metagenomic clones
Microbial Consortia - genetics
Microbial Consortia - physiology
Micrococcus
Micrococcus - metabolism
Oil and Gas Fields - microbiology
Petroleum - analysis
Petroleum - metabolism
Petroleum biodegradation
Phenanthrene
Phenanthrenes - metabolism
Pools
Reservoirs
Sea water ecosystems
Seawater
Seawater - microbiology
Strain
Synecology
title Bioremediation potential of microorganisms derived from petroleum reservoirs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioremediation%20potential%20of%20microorganisms%20derived%20from%20petroleum%20reservoirs&rft.jtitle=Marine%20pollution%20bulletin&rft.au=Dellagnezze,%20Bruna%20Martins&rft.date=2014-12-15&rft.volume=89&rft.issue=1-2&rft.spage=191&rft.epage=200&rft.pages=191-200&rft.issn=0025-326X&rft.eissn=1879-3363&rft.coden=MPNBAZ&rft_id=info:doi/10.1016/j.marpolbul.2014.10.003&rft_dat=%3Cproquest_cross%3E1647014875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1634727579&rft_id=info:pmid/25457810&rft_els_id=S0025326X14006717&rfr_iscdi=true