Epitaxial growth of cerium oxide thin films by pulsed laser deposition

The epitaxial cerium oxide (CeO2) thin films were deposited on yttria stabilized zirconia (YSZ) (100) substrates at various substrate temperatures (673–973 K), energy densities (1–5 J/cm2) and repetition rates (5–30 Hz) with an optimized oxygen partial pressure of 3 Pa, by pulsed laser deposition te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2013-11, Vol.546, p.467-471
Hauptverfasser: Balakrishnan, G., Sudhakara, P., Wasy, Abdul, Ho, Ha Sun, Shin, K.S., Song, J.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue
container_start_page 467
container_title Thin solid films
container_volume 546
creator Balakrishnan, G.
Sudhakara, P.
Wasy, Abdul
Ho, Ha Sun
Shin, K.S.
Song, J.I.
description The epitaxial cerium oxide (CeO2) thin films were deposited on yttria stabilized zirconia (YSZ) (100) substrates at various substrate temperatures (673–973 K), energy densities (1–5 J/cm2) and repetition rates (5–30 Hz) with an optimized oxygen partial pressure of 3 Pa, by pulsed laser deposition technique. The films were characterized by X-ray diffraction and atomic force microscopy to study the influence of substrate temperature, laser fluence and repetition rate on epitaxy, growth mode and surface morphology. The X-ray diffraction studies revealed the epitaxial nature of CeO2 (200) films on yttria stabilized zirconia (100) substrate (CeO2 (200) ‖ YSZ (100)) deposited in the temperature range 673–973 K. The films prepared at low energy densities (1–3 J/cm2) and low repetition rates (1–25 Hz) also indicated the fully epitaxial nature, whereas the films prepared at higher energy density (≥ 4 J/cm2) and repetition rate (30 Hz) indicated deviation from epitaxy. The atomic force microscopy studies showed the formation of dense and uniform nanocrystallites with smooth morphology. The root mean square surface roughness of the films increased with the increase of substrate temperature, increase of energy density and repetition rate. •Films deposited at an optimized pressure 3×10−2 mbar for stoichiometric.•At a low temperature of 673 K itself, epitaxial CeO2 films are formed.•Influences of repetition rate and fluence on epitaxy are studied systematically•Growth mode and surface morphology are studied systematically
doi_str_mv 10.1016/j.tsf.2013.06.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660050144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609013010997</els_id><sourcerecordid>1660050144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e299de6060d584bf5ef3099d53b62842d6fdd3605a9a25fe53d73eb53b0b7d833</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouP75AN5yEby0TpI2bfEk4qogeNFzSJOJZuk2Nemq--2NrHj0NDDv994wj5AzBiUDJi9X5ZxcyYGJEmQJVbtHFqxtuoI3gu2TBUAFhYQODslRSisAYJyLBVneTn7WX14P9DWGz_mNBkcNRr9Z0_DlLdL5zY_U-WGdaL-l02ZIaOmgE0ZqcQrJzz6MJ-TA6ayc_s5j8rK8fb65Lx6f7h5urh8LIyTMBfKusyhBgq3bqnc1OgF5VYte8rbiVjprM1nrTvPaYS1sI7DPMvSNbYU4Jhe73CmG9w2mWa19MjgMesSwSYpJCVADq6qMsh1qYkgpolNT9Gsdt4qB-ulMrVTuTP10pkCq3Fn2nP_G62T04KIejU9_Rt60TS2AZ-5qx2H-9cNjVMl4HA1aH9HMygb_z5Vvv1GBOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660050144</pqid></control><display><type>article</type><title>Epitaxial growth of cerium oxide thin films by pulsed laser deposition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Balakrishnan, G. ; Sudhakara, P. ; Wasy, Abdul ; Ho, Ha Sun ; Shin, K.S. ; Song, J.I.</creator><creatorcontrib>Balakrishnan, G. ; Sudhakara, P. ; Wasy, Abdul ; Ho, Ha Sun ; Shin, K.S. ; Song, J.I.</creatorcontrib><description>The epitaxial cerium oxide (CeO2) thin films were deposited on yttria stabilized zirconia (YSZ) (100) substrates at various substrate temperatures (673–973 K), energy densities (1–5 J/cm2) and repetition rates (5–30 Hz) with an optimized oxygen partial pressure of 3 Pa, by pulsed laser deposition technique. The films were characterized by X-ray diffraction and atomic force microscopy to study the influence of substrate temperature, laser fluence and repetition rate on epitaxy, growth mode and surface morphology. The X-ray diffraction studies revealed the epitaxial nature of CeO2 (200) films on yttria stabilized zirconia (100) substrate (CeO2 (200) ‖ YSZ (100)) deposited in the temperature range 673–973 K. The films prepared at low energy densities (1–3 J/cm2) and low repetition rates (1–25 Hz) also indicated the fully epitaxial nature, whereas the films prepared at higher energy density (≥ 4 J/cm2) and repetition rate (30 Hz) indicated deviation from epitaxy. The atomic force microscopy studies showed the formation of dense and uniform nanocrystallites with smooth morphology. The root mean square surface roughness of the films increased with the increase of substrate temperature, increase of energy density and repetition rate. •Films deposited at an optimized pressure 3×10−2 mbar for stoichiometric.•At a low temperature of 673 K itself, epitaxial CeO2 films are formed.•Influences of repetition rate and fluence on epitaxy are studied systematically•Growth mode and surface morphology are studied systematically</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2013.06.048</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atomic force microscopy ; Cerium oxide ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Diffraction ; Energy density ; Epitaxial ; Epitaxy ; Exact sciences and technology ; Laser deposition ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Morphology ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Pulsed laser deposition ; Repetition ; Structure and morphology; thickness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory and models of film growth ; Thin film structure and morphology ; Thin films ; X-ray diffraction ; Yttria stabilized zirconia</subject><ispartof>Thin solid films, 2013-11, Vol.546, p.467-471</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e299de6060d584bf5ef3099d53b62842d6fdd3605a9a25fe53d73eb53b0b7d833</citedby><cites>FETCH-LOGICAL-c360t-e299de6060d584bf5ef3099d53b62842d6fdd3605a9a25fe53d73eb53b0b7d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tsf.2013.06.048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27875302$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Balakrishnan, G.</creatorcontrib><creatorcontrib>Sudhakara, P.</creatorcontrib><creatorcontrib>Wasy, Abdul</creatorcontrib><creatorcontrib>Ho, Ha Sun</creatorcontrib><creatorcontrib>Shin, K.S.</creatorcontrib><creatorcontrib>Song, J.I.</creatorcontrib><title>Epitaxial growth of cerium oxide thin films by pulsed laser deposition</title><title>Thin solid films</title><description>The epitaxial cerium oxide (CeO2) thin films were deposited on yttria stabilized zirconia (YSZ) (100) substrates at various substrate temperatures (673–973 K), energy densities (1–5 J/cm2) and repetition rates (5–30 Hz) with an optimized oxygen partial pressure of 3 Pa, by pulsed laser deposition technique. The films were characterized by X-ray diffraction and atomic force microscopy to study the influence of substrate temperature, laser fluence and repetition rate on epitaxy, growth mode and surface morphology. The X-ray diffraction studies revealed the epitaxial nature of CeO2 (200) films on yttria stabilized zirconia (100) substrate (CeO2 (200) ‖ YSZ (100)) deposited in the temperature range 673–973 K. The films prepared at low energy densities (1–3 J/cm2) and low repetition rates (1–25 Hz) also indicated the fully epitaxial nature, whereas the films prepared at higher energy density (≥ 4 J/cm2) and repetition rate (30 Hz) indicated deviation from epitaxy. The atomic force microscopy studies showed the formation of dense and uniform nanocrystallites with smooth morphology. The root mean square surface roughness of the films increased with the increase of substrate temperature, increase of energy density and repetition rate. •Films deposited at an optimized pressure 3×10−2 mbar for stoichiometric.•At a low temperature of 673 K itself, epitaxial CeO2 films are formed.•Influences of repetition rate and fluence on epitaxy are studied systematically•Growth mode and surface morphology are studied systematically</description><subject>Atomic force microscopy</subject><subject>Cerium oxide</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Diffraction</subject><subject>Energy density</subject><subject>Epitaxial</subject><subject>Epitaxy</subject><subject>Exact sciences and technology</subject><subject>Laser deposition</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Morphology</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Pulsed laser deposition</subject><subject>Repetition</subject><subject>Structure and morphology; thickness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory and models of film growth</subject><subject>Thin film structure and morphology</subject><subject>Thin films</subject><subject>X-ray diffraction</subject><subject>Yttria stabilized zirconia</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouP75AN5yEby0TpI2bfEk4qogeNFzSJOJZuk2Nemq--2NrHj0NDDv994wj5AzBiUDJi9X5ZxcyYGJEmQJVbtHFqxtuoI3gu2TBUAFhYQODslRSisAYJyLBVneTn7WX14P9DWGz_mNBkcNRr9Z0_DlLdL5zY_U-WGdaL-l02ZIaOmgE0ZqcQrJzz6MJ-TA6ayc_s5j8rK8fb65Lx6f7h5urh8LIyTMBfKusyhBgq3bqnc1OgF5VYte8rbiVjprM1nrTvPaYS1sI7DPMvSNbYU4Jhe73CmG9w2mWa19MjgMesSwSYpJCVADq6qMsh1qYkgpolNT9Gsdt4qB-ulMrVTuTP10pkCq3Fn2nP_G62T04KIejU9_Rt60TS2AZ-5qx2H-9cNjVMl4HA1aH9HMygb_z5Vvv1GBOA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Balakrishnan, G.</creator><creator>Sudhakara, P.</creator><creator>Wasy, Abdul</creator><creator>Ho, Ha Sun</creator><creator>Shin, K.S.</creator><creator>Song, J.I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Epitaxial growth of cerium oxide thin films by pulsed laser deposition</title><author>Balakrishnan, G. ; Sudhakara, P. ; Wasy, Abdul ; Ho, Ha Sun ; Shin, K.S. ; Song, J.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e299de6060d584bf5ef3099d53b62842d6fdd3605a9a25fe53d73eb53b0b7d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atomic force microscopy</topic><topic>Cerium oxide</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Diffraction</topic><topic>Energy density</topic><topic>Epitaxial</topic><topic>Epitaxy</topic><topic>Exact sciences and technology</topic><topic>Laser deposition</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Morphology</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Pulsed laser deposition</topic><topic>Repetition</topic><topic>Structure and morphology; thickness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory and models of film growth</topic><topic>Thin film structure and morphology</topic><topic>Thin films</topic><topic>X-ray diffraction</topic><topic>Yttria stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, G.</creatorcontrib><creatorcontrib>Sudhakara, P.</creatorcontrib><creatorcontrib>Wasy, Abdul</creatorcontrib><creatorcontrib>Ho, Ha Sun</creatorcontrib><creatorcontrib>Shin, K.S.</creatorcontrib><creatorcontrib>Song, J.I.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, G.</au><au>Sudhakara, P.</au><au>Wasy, Abdul</au><au>Ho, Ha Sun</au><au>Shin, K.S.</au><au>Song, J.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial growth of cerium oxide thin films by pulsed laser deposition</atitle><jtitle>Thin solid films</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>546</volume><spage>467</spage><epage>471</epage><pages>467-471</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>The epitaxial cerium oxide (CeO2) thin films were deposited on yttria stabilized zirconia (YSZ) (100) substrates at various substrate temperatures (673–973 K), energy densities (1–5 J/cm2) and repetition rates (5–30 Hz) with an optimized oxygen partial pressure of 3 Pa, by pulsed laser deposition technique. The films were characterized by X-ray diffraction and atomic force microscopy to study the influence of substrate temperature, laser fluence and repetition rate on epitaxy, growth mode and surface morphology. The X-ray diffraction studies revealed the epitaxial nature of CeO2 (200) films on yttria stabilized zirconia (100) substrate (CeO2 (200) ‖ YSZ (100)) deposited in the temperature range 673–973 K. The films prepared at low energy densities (1–3 J/cm2) and low repetition rates (1–25 Hz) also indicated the fully epitaxial nature, whereas the films prepared at higher energy density (≥ 4 J/cm2) and repetition rate (30 Hz) indicated deviation from epitaxy. The atomic force microscopy studies showed the formation of dense and uniform nanocrystallites with smooth morphology. The root mean square surface roughness of the films increased with the increase of substrate temperature, increase of energy density and repetition rate. •Films deposited at an optimized pressure 3×10−2 mbar for stoichiometric.•At a low temperature of 673 K itself, epitaxial CeO2 films are formed.•Influences of repetition rate and fluence on epitaxy are studied systematically•Growth mode and surface morphology are studied systematically</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2013.06.048</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2013-11, Vol.546, p.467-471
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1660050144
source Access via ScienceDirect (Elsevier)
subjects Atomic force microscopy
Cerium oxide
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Deposition
Diffraction
Energy density
Epitaxial
Epitaxy
Exact sciences and technology
Laser deposition
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Morphology
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physics
Pulsed laser deposition
Repetition
Structure and morphology
thickness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory and models of film growth
Thin film structure and morphology
Thin films
X-ray diffraction
Yttria stabilized zirconia
title Epitaxial growth of cerium oxide thin films by pulsed laser deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20growth%20of%20cerium%20oxide%20thin%20films%20by%20pulsed%20laser%20deposition&rft.jtitle=Thin%20solid%20films&rft.au=Balakrishnan,%20G.&rft.date=2013-11-01&rft.volume=546&rft.spage=467&rft.epage=471&rft.pages=467-471&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2013.06.048&rft_dat=%3Cproquest_cross%3E1660050144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660050144&rft_id=info:pmid/&rft_els_id=S0040609013010997&rfr_iscdi=true