A fast low-density parity-check code simulator based on compressed parity-check matrices

ABSTRACTLow‐density parity‐check (LDPC) codes are very powerful error‐correction codes with capabilities approaching the Shannon's limits. In evaluating the error performance of an LDPC code, the computer simulation time taken becomes a primary concern when tens of millions of noise‐corrupted c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2013-05, Vol.13 (7), p.663-670
Hauptverfasser: Yau, Shek F., Wong, Tan L., Lau, Francis C. M., He, Yejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 670
container_issue 7
container_start_page 663
container_title Wireless communications and mobile computing
container_volume 13
creator Yau, Shek F.
Wong, Tan L.
Lau, Francis C. M.
He, Yejun
description ABSTRACTLow‐density parity‐check (LDPC) codes are very powerful error‐correction codes with capabilities approaching the Shannon's limits. In evaluating the error performance of an LDPC code, the computer simulation time taken becomes a primary concern when tens of millions of noise‐corrupted codewords are to be decoded, particularly for codes with very long lengths. In this paper, we propose modeling the parity‐check matrix of an LDPC code with compressed parity‐check matrices in the check‐node domain (CND) and in the bit‐node domain (BND), respectively. Based on the compressed parity‐check matrices, we created two message matrices, one in the CND and another in the BND, and two domain conversion matrices, one from CND to BND and another from BND to CND. With the proposed message matrices, the data used in the iterative LDPC decoding algorithm can be closely packed and stored within a small memory size. Consequently, such data can be mostly stored in the cache memory, reducing the need for the central processing unit to access the random access memory and hence improving the simulation time significantly. Furthermore, the messages in one domain can be easily converted to another domain with the use of the conversion matrices, facilitating the central processing unit to access and update the messages. Copyright © 2011 John Wiley & Sons, Ltd. Using the proposed compressed‐parity‐check‐matrix (CPCM) approach to simulate a LDPC decoder can greatly increase the simulation speed. Results show that compared with the commonly used linked‐list approach, the new approach reduces the simulation time by up to 75%. Moreover, the speed‐up improvement becomes more remarkable as the code‐length increases.
doi_str_mv 10.1002/wcm.1129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660049776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660049776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3369-db1c9baa7983d2249efc2bbe80df63e161a188432bf2be53fbdffb5d1005ad563</originalsourceid><addsrcrecordid>eNp10MtKw0AUBuBBFKxV8BGydJM6l2aSWZZWW6FVQaXSzTCXMxibNHEmpfbtTakUu3B1LnwcOD9C1wT3CMb0dmPKHiFUnKAOSRiOM56mp4eei3N0EcInxphhSjrofRA5FZqoqDaxhVXIm21UK9-W2HyAWUamshCFvFwXqql8pFUAG1Wrdl_WHsJuOvKlanxuIFyiM6eKAFe_tYve7u9eh5N4-jR-GA6msWGMi9hqYoRWKhUZs5T2BThDtYYMW8cZEE4UybI-o9pRDQlz2jqnE9v-miibcNZFN_u7ta--1hAaWebBQFGoFVTrIAnnGPdFmv6hxlcheHCy9nmp_FYSLHfhyTY8uQuvpfGebvICtv86OR_Ojn0eGvg-eOWXkqcsTeT8cSzp7FksRi8LOWI_1NiBFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660049776</pqid></control><display><type>article</type><title>A fast low-density parity-check code simulator based on compressed parity-check matrices</title><source>Alma/SFX Local Collection</source><creator>Yau, Shek F. ; Wong, Tan L. ; Lau, Francis C. M. ; He, Yejun</creator><creatorcontrib>Yau, Shek F. ; Wong, Tan L. ; Lau, Francis C. M. ; He, Yejun</creatorcontrib><description>ABSTRACTLow‐density parity‐check (LDPC) codes are very powerful error‐correction codes with capabilities approaching the Shannon's limits. In evaluating the error performance of an LDPC code, the computer simulation time taken becomes a primary concern when tens of millions of noise‐corrupted codewords are to be decoded, particularly for codes with very long lengths. In this paper, we propose modeling the parity‐check matrix of an LDPC code with compressed parity‐check matrices in the check‐node domain (CND) and in the bit‐node domain (BND), respectively. Based on the compressed parity‐check matrices, we created two message matrices, one in the CND and another in the BND, and two domain conversion matrices, one from CND to BND and another from BND to CND. With the proposed message matrices, the data used in the iterative LDPC decoding algorithm can be closely packed and stored within a small memory size. Consequently, such data can be mostly stored in the cache memory, reducing the need for the central processing unit to access the random access memory and hence improving the simulation time significantly. Furthermore, the messages in one domain can be easily converted to another domain with the use of the conversion matrices, facilitating the central processing unit to access and update the messages. Copyright © 2011 John Wiley &amp; Sons, Ltd. Using the proposed compressed‐parity‐check‐matrix (CPCM) approach to simulate a LDPC decoder can greatly increase the simulation speed. Results show that compared with the commonly used linked‐list approach, the new approach reduces the simulation time by up to 75%. Moreover, the speed‐up improvement becomes more remarkable as the code‐length increases.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1002/wcm.1129</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Central processing units ; Compressed ; compressed parity-check matrices ; Computer simulation ; Conversion ; Decoding ; domain conversion matrices ; Error correcting codes ; LDPC codes ; Messages ; simulation time ; Wireless communication</subject><ispartof>Wireless communications and mobile computing, 2013-05, Vol.13 (7), p.663-670</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3369-db1c9baa7983d2249efc2bbe80df63e161a188432bf2be53fbdffb5d1005ad563</citedby><cites>FETCH-LOGICAL-c3369-db1c9baa7983d2249efc2bbe80df63e161a188432bf2be53fbdffb5d1005ad563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yau, Shek F.</creatorcontrib><creatorcontrib>Wong, Tan L.</creatorcontrib><creatorcontrib>Lau, Francis C. M.</creatorcontrib><creatorcontrib>He, Yejun</creatorcontrib><title>A fast low-density parity-check code simulator based on compressed parity-check matrices</title><title>Wireless communications and mobile computing</title><addtitle>Wirel. Commun. Mob. Comput</addtitle><description>ABSTRACTLow‐density parity‐check (LDPC) codes are very powerful error‐correction codes with capabilities approaching the Shannon's limits. In evaluating the error performance of an LDPC code, the computer simulation time taken becomes a primary concern when tens of millions of noise‐corrupted codewords are to be decoded, particularly for codes with very long lengths. In this paper, we propose modeling the parity‐check matrix of an LDPC code with compressed parity‐check matrices in the check‐node domain (CND) and in the bit‐node domain (BND), respectively. Based on the compressed parity‐check matrices, we created two message matrices, one in the CND and another in the BND, and two domain conversion matrices, one from CND to BND and another from BND to CND. With the proposed message matrices, the data used in the iterative LDPC decoding algorithm can be closely packed and stored within a small memory size. Consequently, such data can be mostly stored in the cache memory, reducing the need for the central processing unit to access the random access memory and hence improving the simulation time significantly. Furthermore, the messages in one domain can be easily converted to another domain with the use of the conversion matrices, facilitating the central processing unit to access and update the messages. Copyright © 2011 John Wiley &amp; Sons, Ltd. Using the proposed compressed‐parity‐check‐matrix (CPCM) approach to simulate a LDPC decoder can greatly increase the simulation speed. Results show that compared with the commonly used linked‐list approach, the new approach reduces the simulation time by up to 75%. Moreover, the speed‐up improvement becomes more remarkable as the code‐length increases.</description><subject>Central processing units</subject><subject>Compressed</subject><subject>compressed parity-check matrices</subject><subject>Computer simulation</subject><subject>Conversion</subject><subject>Decoding</subject><subject>domain conversion matrices</subject><subject>Error correcting codes</subject><subject>LDPC codes</subject><subject>Messages</subject><subject>simulation time</subject><subject>Wireless communication</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp10MtKw0AUBuBBFKxV8BGydJM6l2aSWZZWW6FVQaXSzTCXMxibNHEmpfbtTakUu3B1LnwcOD9C1wT3CMb0dmPKHiFUnKAOSRiOM56mp4eei3N0EcInxphhSjrofRA5FZqoqDaxhVXIm21UK9-W2HyAWUamshCFvFwXqql8pFUAG1Wrdl_WHsJuOvKlanxuIFyiM6eKAFe_tYve7u9eh5N4-jR-GA6msWGMi9hqYoRWKhUZs5T2BThDtYYMW8cZEE4UybI-o9pRDQlz2jqnE9v-miibcNZFN_u7ta--1hAaWebBQFGoFVTrIAnnGPdFmv6hxlcheHCy9nmp_FYSLHfhyTY8uQuvpfGebvICtv86OR_Ojn0eGvg-eOWXkqcsTeT8cSzp7FksRi8LOWI_1NiBFA</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Yau, Shek F.</creator><creator>Wong, Tan L.</creator><creator>Lau, Francis C. M.</creator><creator>He, Yejun</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201305</creationdate><title>A fast low-density parity-check code simulator based on compressed parity-check matrices</title><author>Yau, Shek F. ; Wong, Tan L. ; Lau, Francis C. M. ; He, Yejun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3369-db1c9baa7983d2249efc2bbe80df63e161a188432bf2be53fbdffb5d1005ad563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Central processing units</topic><topic>Compressed</topic><topic>compressed parity-check matrices</topic><topic>Computer simulation</topic><topic>Conversion</topic><topic>Decoding</topic><topic>domain conversion matrices</topic><topic>Error correcting codes</topic><topic>LDPC codes</topic><topic>Messages</topic><topic>simulation time</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yau, Shek F.</creatorcontrib><creatorcontrib>Wong, Tan L.</creatorcontrib><creatorcontrib>Lau, Francis C. M.</creatorcontrib><creatorcontrib>He, Yejun</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yau, Shek F.</au><au>Wong, Tan L.</au><au>Lau, Francis C. M.</au><au>He, Yejun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast low-density parity-check code simulator based on compressed parity-check matrices</atitle><jtitle>Wireless communications and mobile computing</jtitle><addtitle>Wirel. Commun. Mob. Comput</addtitle><date>2013-05</date><risdate>2013</risdate><volume>13</volume><issue>7</issue><spage>663</spage><epage>670</epage><pages>663-670</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>ABSTRACTLow‐density parity‐check (LDPC) codes are very powerful error‐correction codes with capabilities approaching the Shannon's limits. In evaluating the error performance of an LDPC code, the computer simulation time taken becomes a primary concern when tens of millions of noise‐corrupted codewords are to be decoded, particularly for codes with very long lengths. In this paper, we propose modeling the parity‐check matrix of an LDPC code with compressed parity‐check matrices in the check‐node domain (CND) and in the bit‐node domain (BND), respectively. Based on the compressed parity‐check matrices, we created two message matrices, one in the CND and another in the BND, and two domain conversion matrices, one from CND to BND and another from BND to CND. With the proposed message matrices, the data used in the iterative LDPC decoding algorithm can be closely packed and stored within a small memory size. Consequently, such data can be mostly stored in the cache memory, reducing the need for the central processing unit to access the random access memory and hence improving the simulation time significantly. Furthermore, the messages in one domain can be easily converted to another domain with the use of the conversion matrices, facilitating the central processing unit to access and update the messages. Copyright © 2011 John Wiley &amp; Sons, Ltd. Using the proposed compressed‐parity‐check‐matrix (CPCM) approach to simulate a LDPC decoder can greatly increase the simulation speed. Results show that compared with the commonly used linked‐list approach, the new approach reduces the simulation time by up to 75%. Moreover, the speed‐up improvement becomes more remarkable as the code‐length increases.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/wcm.1129</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2013-05, Vol.13 (7), p.663-670
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_miscellaneous_1660049776
source Alma/SFX Local Collection
subjects Central processing units
Compressed
compressed parity-check matrices
Computer simulation
Conversion
Decoding
domain conversion matrices
Error correcting codes
LDPC codes
Messages
simulation time
Wireless communication
title A fast low-density parity-check code simulator based on compressed parity-check matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20low-density%20parity-check%20code%20simulator%20based%20on%20compressed%20parity-check%20matrices&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Yau,%20Shek%20F.&rft.date=2013-05&rft.volume=13&rft.issue=7&rft.spage=663&rft.epage=670&rft.pages=663-670&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1002/wcm.1129&rft_dat=%3Cproquest_cross%3E1660049776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660049776&rft_id=info:pmid/&rfr_iscdi=true