Disease Detection and Diagnosis on Plant using Image Processing A Review
Diseases decrease the productivity of plant. Which restrict the growth of plant and quality and quantity of plant also reduces. Image processing is best way for detecting and diagnosis the diseases. In which initially the infected region is found then different features are extracted such as color,...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2014-01, Vol.108 (13), p.36-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 13 |
container_start_page | 36 |
container_title | International journal of computer applications |
container_volume | 108 |
creator | Khairnar, Khushal Dagade, Rahul |
description | Diseases decrease the productivity of plant. Which restrict the growth of plant and quality and quantity of plant also reduces. Image processing is best way for detecting and diagnosis the diseases. In which initially the infected region is found then different features are extracted such as color, texture and shape. Finally classification technique is used for detecting the diseases. There are different feature extraction techniques for extracting the color, texture and edge features such as color space, color histogram, grey level co-occurrence matrix (CCM), Gabor filter, Canny and Sobel edge detector. There are also different classification techniques such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Backpropagation (BP) Network, Probabilistic Neural Network (PNN), Radial Basis Function (RBF) Neural Network. |
doi_str_mv | 10.5120/18973-0445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660049616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3550712021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1735-b8167b78d945ebce4fcf87b855e49fadf790ee9d0ded7a2895880561949878003</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWGov_oKAFxFWk918HkurtlCwiJ5DNju7pLSbutlV_PemrQdxLjO8PAwPL0LXlNxzmpMHqrQsMsIYP0MjoiXPlFLy_M99iSYxbkiaQudCsxFazH0EGwHPoQfX-9Bi21Z47m3ThugjTsF6a9seD9G3DV7ubAN43QUH8RhM8St8evi6Qhe13UaY_O4xen96fJststXL83I2XWWOyoJnpaJCllJVmnEoHbDa1UqWinNgurZVLTUB0BWpoJI2V5orRbigmmklVfIeo9vT330XPgaIvdn56GCbHCEM0VAhCGFaUJHQm3_oJgxdm-wSxYqcCMZlou5OlOtCjB3UZt_5ne2-DSXm0Ks59moOvRY_yCBngg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1643206457</pqid></control><display><type>article</type><title>Disease Detection and Diagnosis on Plant using Image Processing A Review</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khairnar, Khushal ; Dagade, Rahul</creator><creatorcontrib>Khairnar, Khushal ; Dagade, Rahul</creatorcontrib><description>Diseases decrease the productivity of plant. Which restrict the growth of plant and quality and quantity of plant also reduces. Image processing is best way for detecting and diagnosis the diseases. In which initially the infected region is found then different features are extracted such as color, texture and shape. Finally classification technique is used for detecting the diseases. There are different feature extraction techniques for extracting the color, texture and edge features such as color space, color histogram, grey level co-occurrence matrix (CCM), Gabor filter, Canny and Sobel edge detector. There are also different classification techniques such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Backpropagation (BP) Network, Probabilistic Neural Network (PNN), Radial Basis Function (RBF) Neural Network.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/18973-0445</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Color ; Diagnosis ; Feature extraction ; Image processing ; Neural networks ; Support vector machines ; Surface layer ; Texture</subject><ispartof>International journal of computer applications, 2014-01, Vol.108 (13), p.36-38</ispartof><rights>Copyright Foundation of Computer Science 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1735-b8167b78d945ebce4fcf87b855e49fadf790ee9d0ded7a2895880561949878003</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Khairnar, Khushal</creatorcontrib><creatorcontrib>Dagade, Rahul</creatorcontrib><title>Disease Detection and Diagnosis on Plant using Image Processing A Review</title><title>International journal of computer applications</title><description>Diseases decrease the productivity of plant. Which restrict the growth of plant and quality and quantity of plant also reduces. Image processing is best way for detecting and diagnosis the diseases. In which initially the infected region is found then different features are extracted such as color, texture and shape. Finally classification technique is used for detecting the diseases. There are different feature extraction techniques for extracting the color, texture and edge features such as color space, color histogram, grey level co-occurrence matrix (CCM), Gabor filter, Canny and Sobel edge detector. There are also different classification techniques such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Backpropagation (BP) Network, Probabilistic Neural Network (PNN), Radial Basis Function (RBF) Neural Network.</description><subject>Color</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Surface layer</subject><subject>Texture</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWGov_oKAFxFWk918HkurtlCwiJ5DNju7pLSbutlV_PemrQdxLjO8PAwPL0LXlNxzmpMHqrQsMsIYP0MjoiXPlFLy_M99iSYxbkiaQudCsxFazH0EGwHPoQfX-9Bi21Z47m3ThugjTsF6a9seD9G3DV7ubAN43QUH8RhM8St8evi6Qhe13UaY_O4xen96fJststXL83I2XWWOyoJnpaJCllJVmnEoHbDa1UqWinNgurZVLTUB0BWpoJI2V5orRbigmmklVfIeo9vT330XPgaIvdn56GCbHCEM0VAhCGFaUJHQm3_oJgxdm-wSxYqcCMZlou5OlOtCjB3UZt_5ne2-DSXm0Ks59moOvRY_yCBngg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Khairnar, Khushal</creator><creator>Dagade, Rahul</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>Disease Detection and Diagnosis on Plant using Image Processing A Review</title><author>Khairnar, Khushal ; Dagade, Rahul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1735-b8167b78d945ebce4fcf87b855e49fadf790ee9d0ded7a2895880561949878003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Color</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>online_resources</toplevel><creatorcontrib>Khairnar, Khushal</creatorcontrib><creatorcontrib>Dagade, Rahul</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khairnar, Khushal</au><au>Dagade, Rahul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disease Detection and Diagnosis on Plant using Image Processing A Review</atitle><jtitle>International journal of computer applications</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>108</volume><issue>13</issue><spage>36</spage><epage>38</epage><pages>36-38</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Diseases decrease the productivity of plant. Which restrict the growth of plant and quality and quantity of plant also reduces. Image processing is best way for detecting and diagnosis the diseases. In which initially the infected region is found then different features are extracted such as color, texture and shape. Finally classification technique is used for detecting the diseases. There are different feature extraction techniques for extracting the color, texture and edge features such as color space, color histogram, grey level co-occurrence matrix (CCM), Gabor filter, Canny and Sobel edge detector. There are also different classification techniques such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Backpropagation (BP) Network, Probabilistic Neural Network (PNN), Radial Basis Function (RBF) Neural Network.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/18973-0445</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2014-01, Vol.108 (13), p.36-38 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660049616 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Color Diagnosis Feature extraction Image processing Neural networks Support vector machines Surface layer Texture |
title | Disease Detection and Diagnosis on Plant using Image Processing A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disease%20Detection%20and%20Diagnosis%20on%20Plant%20using%20Image%20Processing%20A%20Review&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Khairnar,%20Khushal&rft.date=2014-01-01&rft.volume=108&rft.issue=13&rft.spage=36&rft.epage=38&rft.pages=36-38&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/18973-0445&rft_dat=%3Cproquest_cross%3E3550712021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1643206457&rft_id=info:pmid/&rfr_iscdi=true |