Micromagnetic simulation of an antiferromagnetic particle

[Display omitted] •A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2015-02, Vol.97, p.42-47
Hauptverfasser: Ntallis, N., Efthimiadis, K.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 42
container_title Computational materials science
container_volume 97
creator Ntallis, N.
Efthimiadis, K.G.
description [Display omitted] •A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear. A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size and the anisotropy field strength. Different magnetization processes appear by increasing the size of the particle. For large particles nucleation and expansion of a reversed domain is observed, separated by an almost 90° wall. An estimation of the single domain radius Rc is made.
doi_str_mv 10.1016/j.commatsci.2014.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660044863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025614006843</els_id><sourcerecordid>1660044863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6a844eabbeb9c085ebf52680ea0f652b5883bb812183541de0cb9368731d8da63</originalsourceid><addsrcrecordid>eNqFkEtLBDEQhIMouK7-BvfoZcbOYzKZ47L4ghUveg5JpkeyzGNNMoL_3iwr4k1oKOiuaqiPkGsKJQUqb3elm4bBpOh8yYCKvC2BwglZUFU3BSigp2QBDasLYJU8Jxcx7iAnG8UWpHn2LkyDeR8xebeKfph7k_w0rqZuZcY8yXcY_lj2JmTp8ZKcdaaPePWjS_J2f_e6eSy2Lw9Pm_W2cFyoVEijhEBjLdrGgarQdhWTCtBAJytmK6W4tYoyqnglaIvgbMOlqjltVWskX5Kb4999mD5mjEkPPjrsezPiNEdNpQQQQkmerfXRmivFGLDT--AHE740BX2ApXf6F5Y-wDocMqycXB-TmJt8egw6O3B02PqALul28v_--AbmkneC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660044863</pqid></control><display><type>article</type><title>Micromagnetic simulation of an antiferromagnetic particle</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ntallis, N. ; Efthimiadis, K.G.</creator><creatorcontrib>Ntallis, N. ; Efthimiadis, K.G.</creatorcontrib><description>[Display omitted] •A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear. A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size and the anisotropy field strength. Different magnetization processes appear by increasing the size of the particle. For large particles nucleation and expansion of a reversed domain is observed, separated by an almost 90° wall. An estimation of the single domain radius Rc is made.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2014.10.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Antiferromagnet ; Antiferromagnetism ; Computer simulation ; Field strength ; Finite element method ; Magnetization ; Mathematical analysis ; Mathematical models ; Micromagnetic simulation ; Nucleation ; Walls</subject><ispartof>Computational materials science, 2015-02, Vol.97, p.42-47</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6a844eabbeb9c085ebf52680ea0f652b5883bb812183541de0cb9368731d8da63</citedby><cites>FETCH-LOGICAL-c348t-6a844eabbeb9c085ebf52680ea0f652b5883bb812183541de0cb9368731d8da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025614006843$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ntallis, N.</creatorcontrib><creatorcontrib>Efthimiadis, K.G.</creatorcontrib><title>Micromagnetic simulation of an antiferromagnetic particle</title><title>Computational materials science</title><description>[Display omitted] •A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear. A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size and the anisotropy field strength. Different magnetization processes appear by increasing the size of the particle. For large particles nucleation and expansion of a reversed domain is observed, separated by an almost 90° wall. An estimation of the single domain radius Rc is made.</description><subject>Antiferromagnet</subject><subject>Antiferromagnetism</subject><subject>Computer simulation</subject><subject>Field strength</subject><subject>Finite element method</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Micromagnetic simulation</subject><subject>Nucleation</subject><subject>Walls</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLBDEQhIMouK7-BvfoZcbOYzKZ47L4ghUveg5JpkeyzGNNMoL_3iwr4k1oKOiuaqiPkGsKJQUqb3elm4bBpOh8yYCKvC2BwglZUFU3BSigp2QBDasLYJU8Jxcx7iAnG8UWpHn2LkyDeR8xebeKfph7k_w0rqZuZcY8yXcY_lj2JmTp8ZKcdaaPePWjS_J2f_e6eSy2Lw9Pm_W2cFyoVEijhEBjLdrGgarQdhWTCtBAJytmK6W4tYoyqnglaIvgbMOlqjltVWskX5Kb4999mD5mjEkPPjrsezPiNEdNpQQQQkmerfXRmivFGLDT--AHE740BX2ApXf6F5Y-wDocMqycXB-TmJt8egw6O3B02PqALul28v_--AbmkneC</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Ntallis, N.</creator><creator>Efthimiadis, K.G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Micromagnetic simulation of an antiferromagnetic particle</title><author>Ntallis, N. ; Efthimiadis, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6a844eabbeb9c085ebf52680ea0f652b5883bb812183541de0cb9368731d8da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antiferromagnet</topic><topic>Antiferromagnetism</topic><topic>Computer simulation</topic><topic>Field strength</topic><topic>Finite element method</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Micromagnetic simulation</topic><topic>Nucleation</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntallis, N.</creatorcontrib><creatorcontrib>Efthimiadis, K.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntallis, N.</au><au>Efthimiadis, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromagnetic simulation of an antiferromagnetic particle</atitle><jtitle>Computational materials science</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>97</volume><spage>42</spage><epage>47</epage><pages>42-47</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] •A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear. A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size and the anisotropy field strength. Different magnetization processes appear by increasing the size of the particle. For large particles nucleation and expansion of a reversed domain is observed, separated by an almost 90° wall. An estimation of the single domain radius Rc is made.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2014.10.010</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2015-02, Vol.97, p.42-47
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1660044863
source Elsevier ScienceDirect Journals Complete
subjects Antiferromagnet
Antiferromagnetism
Computer simulation
Field strength
Finite element method
Magnetization
Mathematical analysis
Mathematical models
Micromagnetic simulation
Nucleation
Walls
title Micromagnetic simulation of an antiferromagnetic particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromagnetic%20simulation%20of%20an%20antiferromagnetic%20particle&rft.jtitle=Computational%20materials%20science&rft.au=Ntallis,%20N.&rft.date=2015-02-01&rft.volume=97&rft.spage=42&rft.epage=47&rft.pages=42-47&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2014.10.010&rft_dat=%3Cproquest_cross%3E1660044863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660044863&rft_id=info:pmid/&rft_els_id=S0927025614006843&rfr_iscdi=true