Micromagnetic simulation of an antiferromagnetic particle
[Display omitted] •A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2015-02, Vol.97, p.42-47 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | |
container_start_page | 42 |
container_title | Computational materials science |
container_volume | 97 |
creator | Ntallis, N. Efthimiadis, K.G. |
description | [Display omitted]
•A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear.
A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size and the anisotropy field strength. Different magnetization processes appear by increasing the size of the particle. For large particles nucleation and expansion of a reversed domain is observed, separated by an almost 90° wall. An estimation of the single domain radius Rc is made. |
doi_str_mv | 10.1016/j.commatsci.2014.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660044863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025614006843</els_id><sourcerecordid>1660044863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6a844eabbeb9c085ebf52680ea0f652b5883bb812183541de0cb9368731d8da63</originalsourceid><addsrcrecordid>eNqFkEtLBDEQhIMouK7-BvfoZcbOYzKZ47L4ghUveg5JpkeyzGNNMoL_3iwr4k1oKOiuaqiPkGsKJQUqb3elm4bBpOh8yYCKvC2BwglZUFU3BSigp2QBDasLYJU8Jxcx7iAnG8UWpHn2LkyDeR8xebeKfph7k_w0rqZuZcY8yXcY_lj2JmTp8ZKcdaaPePWjS_J2f_e6eSy2Lw9Pm_W2cFyoVEijhEBjLdrGgarQdhWTCtBAJytmK6W4tYoyqnglaIvgbMOlqjltVWskX5Kb4999mD5mjEkPPjrsezPiNEdNpQQQQkmerfXRmivFGLDT--AHE740BX2ApXf6F5Y-wDocMqycXB-TmJt8egw6O3B02PqALul28v_--AbmkneC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660044863</pqid></control><display><type>article</type><title>Micromagnetic simulation of an antiferromagnetic particle</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ntallis, N. ; Efthimiadis, K.G.</creator><creatorcontrib>Ntallis, N. ; Efthimiadis, K.G.</creatorcontrib><description>[Display omitted]
•A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear.
A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size and the anisotropy field strength. Different magnetization processes appear by increasing the size of the particle. For large particles nucleation and expansion of a reversed domain is observed, separated by an almost 90° wall. An estimation of the single domain radius Rc is made.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2014.10.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Antiferromagnet ; Antiferromagnetism ; Computer simulation ; Field strength ; Finite element method ; Magnetization ; Mathematical analysis ; Mathematical models ; Micromagnetic simulation ; Nucleation ; Walls</subject><ispartof>Computational materials science, 2015-02, Vol.97, p.42-47</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6a844eabbeb9c085ebf52680ea0f652b5883bb812183541de0cb9368731d8da63</citedby><cites>FETCH-LOGICAL-c348t-6a844eabbeb9c085ebf52680ea0f652b5883bb812183541de0cb9368731d8da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025614006843$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ntallis, N.</creatorcontrib><creatorcontrib>Efthimiadis, K.G.</creatorcontrib><title>Micromagnetic simulation of an antiferromagnetic particle</title><title>Computational materials science</title><description>[Display omitted]
•A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear.
A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size and the anisotropy field strength. Different magnetization processes appear by increasing the size of the particle. For large particles nucleation and expansion of a reversed domain is observed, separated by an almost 90° wall. An estimation of the single domain radius Rc is made.</description><subject>Antiferromagnet</subject><subject>Antiferromagnetism</subject><subject>Computer simulation</subject><subject>Field strength</subject><subject>Finite element method</subject><subject>Magnetization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Micromagnetic simulation</subject><subject>Nucleation</subject><subject>Walls</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLBDEQhIMouK7-BvfoZcbOYzKZ47L4ghUveg5JpkeyzGNNMoL_3iwr4k1oKOiuaqiPkGsKJQUqb3elm4bBpOh8yYCKvC2BwglZUFU3BSigp2QBDasLYJU8Jxcx7iAnG8UWpHn2LkyDeR8xebeKfph7k_w0rqZuZcY8yXcY_lj2JmTp8ZKcdaaPePWjS_J2f_e6eSy2Lw9Pm_W2cFyoVEijhEBjLdrGgarQdhWTCtBAJytmK6W4tYoyqnglaIvgbMOlqjltVWskX5Kb4999mD5mjEkPPjrsezPiNEdNpQQQQkmerfXRmivFGLDT--AHE740BX2ApXf6F5Y-wDocMqycXB-TmJt8egw6O3B02PqALul28v_--AbmkneC</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Ntallis, N.</creator><creator>Efthimiadis, K.G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150201</creationdate><title>Micromagnetic simulation of an antiferromagnetic particle</title><author>Ntallis, N. ; Efthimiadis, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6a844eabbeb9c085ebf52680ea0f652b5883bb812183541de0cb9368731d8da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antiferromagnet</topic><topic>Antiferromagnetism</topic><topic>Computer simulation</topic><topic>Field strength</topic><topic>Finite element method</topic><topic>Magnetization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Micromagnetic simulation</topic><topic>Nucleation</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ntallis, N.</creatorcontrib><creatorcontrib>Efthimiadis, K.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ntallis, N.</au><au>Efthimiadis, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromagnetic simulation of an antiferromagnetic particle</atitle><jtitle>Computational materials science</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>97</volume><spage>42</spage><epage>47</epage><pages>42-47</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted]
•A continuous micromagnetic model is derived for an antiferromagnet.•The resulting PDE are solved by FEM for a spherical uniaxial particle.•Without the dipole interactions spin flop/flip transitions are predicted.•Introducing dipole interactions different magnetization modes appear.
A continuum micromagnetic model is derived, describing an antiferromagnet. Using the finite element method, magnetization curves are calculated for a spherical uniaxial particle, varying the particle’s size and the anisotropy field strength. Different magnetization processes appear by increasing the size of the particle. For large particles nucleation and expansion of a reversed domain is observed, separated by an almost 90° wall. An estimation of the single domain radius Rc is made.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2014.10.010</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2015-02, Vol.97, p.42-47 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660044863 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Antiferromagnet Antiferromagnetism Computer simulation Field strength Finite element method Magnetization Mathematical analysis Mathematical models Micromagnetic simulation Nucleation Walls |
title | Micromagnetic simulation of an antiferromagnetic particle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromagnetic%20simulation%20of%20an%20antiferromagnetic%20particle&rft.jtitle=Computational%20materials%20science&rft.au=Ntallis,%20N.&rft.date=2015-02-01&rft.volume=97&rft.spage=42&rft.epage=47&rft.pages=42-47&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2014.10.010&rft_dat=%3Cproquest_cross%3E1660044863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660044863&rft_id=info:pmid/&rft_els_id=S0927025614006843&rfr_iscdi=true |