HOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR–PREY SYSTEM INVOLVING TWO DELAYS

The aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-dependent predator–prey system involving two discrete delays. A delay parameter is chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic solutions is determined by using the cent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ANZIAM journal 2014-01, Vol.55 (3), p.214-231
Hauptverfasser: KARAOGLU, E., MERDAN, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 3
container_start_page 214
container_title The ANZIAM journal
container_volume 55
creator KARAOGLU, E.
MERDAN, H.
description The aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-dependent predator–prey system involving two discrete delays. A delay parameter is chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic solutions is determined by using the centre manifold theorem and the normal form theory introduced by Hassard et al. Some of the bifurcation properties including the direction, stability and period are given. Finally, our theoretical results are supported by some numerical simulations.
doi_str_mv 10.1017/S1446181114000054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660044513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446181114000054</cupid><sourcerecordid>1660044513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-af717fd905847f78748bdbef1b07ed26b061a9ad93c25c5362492894e6f23f363</originalsourceid><addsrcrecordid>eNp9UM1Og0AY3BhNrNUH8LZHL-guu-zCEQu0JMg2QGuIB8LPrmnTlsq2B2--g2_okwhpbyZ-l28y38yXzABwj9EjRpg_pZhShm2MMUX9WPQCjAbKsDmxLs94uF-DG63XCFHCiTkCbzMxD-BzGCySiZuFIoZu7EZ5GqYwEAl0YTKwhufP_djz4wzOE99zM5H8fH33MIdpnmb-CwzjpYiWYTyF2auAnh-5eXoLrlS50fLuvMdgEfjZZGZEYhpO3MioiWMfjFJxzFXjIMumXHGbU7tqKqlwhbhsTFYhhkunbBxSm1ZtEWZSx7QdKpkyiSKMjMHD6e--az-OUh-K7UrXcrMpd7I96gIz1uelFia9FJ-kdddq3UlV7LvVtuw-C4yKocjiT5G9h5w95bbqVs27LNbtsdv1kf5x_QJIZm1H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660044513</pqid></control><display><type>article</type><title>HOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR–PREY SYSTEM INVOLVING TWO DELAYS</title><source>Alma/SFX Local Collection</source><creator>KARAOGLU, E. ; MERDAN, H.</creator><creatorcontrib>KARAOGLU, E. ; MERDAN, H.</creatorcontrib><description>The aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-dependent predator–prey system involving two discrete delays. A delay parameter is chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic solutions is determined by using the centre manifold theorem and the normal form theory introduced by Hassard et al. Some of the bifurcation properties including the direction, stability and period are given. Finally, our theoretical results are supported by some numerical simulations.</description><identifier>ISSN: 1446-1811</identifier><identifier>EISSN: 1446-8735</identifier><identifier>DOI: 10.1017/S1446181114000054</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Bifurcation theory ; Bifurcations ; Computer simulation ; Delay ; Hopf bifurcation ; Manifolds ; Mathematical models ; Stability</subject><ispartof>The ANZIAM journal, 2014-01, Vol.55 (3), p.214-231</ispartof><rights>Copyright © 2014 Australian Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-af717fd905847f78748bdbef1b07ed26b061a9ad93c25c5362492894e6f23f363</citedby><cites>FETCH-LOGICAL-c398t-af717fd905847f78748bdbef1b07ed26b061a9ad93c25c5362492894e6f23f363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>KARAOGLU, E.</creatorcontrib><creatorcontrib>MERDAN, H.</creatorcontrib><title>HOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR–PREY SYSTEM INVOLVING TWO DELAYS</title><title>The ANZIAM journal</title><addtitle>ANZIAM J</addtitle><description>The aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-dependent predator–prey system involving two discrete delays. A delay parameter is chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic solutions is determined by using the centre manifold theorem and the normal form theory introduced by Hassard et al. Some of the bifurcation properties including the direction, stability and period are given. Finally, our theoretical results are supported by some numerical simulations.</description><subject>Bifurcation theory</subject><subject>Bifurcations</subject><subject>Computer simulation</subject><subject>Delay</subject><subject>Hopf bifurcation</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Stability</subject><issn>1446-1811</issn><issn>1446-8735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UM1Og0AY3BhNrNUH8LZHL-guu-zCEQu0JMg2QGuIB8LPrmnTlsq2B2--g2_okwhpbyZ-l28y38yXzABwj9EjRpg_pZhShm2MMUX9WPQCjAbKsDmxLs94uF-DG63XCFHCiTkCbzMxD-BzGCySiZuFIoZu7EZ5GqYwEAl0YTKwhufP_djz4wzOE99zM5H8fH33MIdpnmb-CwzjpYiWYTyF2auAnh-5eXoLrlS50fLuvMdgEfjZZGZEYhpO3MioiWMfjFJxzFXjIMumXHGbU7tqKqlwhbhsTFYhhkunbBxSm1ZtEWZSx7QdKpkyiSKMjMHD6e--az-OUh-K7UrXcrMpd7I96gIz1uelFia9FJ-kdddq3UlV7LvVtuw-C4yKocjiT5G9h5w95bbqVs27LNbtsdv1kf5x_QJIZm1H</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>KARAOGLU, E.</creator><creator>MERDAN, H.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140101</creationdate><title>HOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR–PREY SYSTEM INVOLVING TWO DELAYS</title><author>KARAOGLU, E. ; MERDAN, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-af717fd905847f78748bdbef1b07ed26b061a9ad93c25c5362492894e6f23f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bifurcation theory</topic><topic>Bifurcations</topic><topic>Computer simulation</topic><topic>Delay</topic><topic>Hopf bifurcation</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KARAOGLU, E.</creatorcontrib><creatorcontrib>MERDAN, H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>The ANZIAM journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KARAOGLU, E.</au><au>MERDAN, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR–PREY SYSTEM INVOLVING TWO DELAYS</atitle><jtitle>The ANZIAM journal</jtitle><addtitle>ANZIAM J</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>55</volume><issue>3</issue><spage>214</spage><epage>231</epage><pages>214-231</pages><issn>1446-1811</issn><eissn>1446-8735</eissn><abstract>The aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-dependent predator–prey system involving two discrete delays. A delay parameter is chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic solutions is determined by using the centre manifold theorem and the normal form theory introduced by Hassard et al. Some of the bifurcation properties including the direction, stability and period are given. Finally, our theoretical results are supported by some numerical simulations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446181114000054</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1446-1811
ispartof The ANZIAM journal, 2014-01, Vol.55 (3), p.214-231
issn 1446-1811
1446-8735
language eng
recordid cdi_proquest_miscellaneous_1660044513
source Alma/SFX Local Collection
subjects Bifurcation theory
Bifurcations
Computer simulation
Delay
Hopf bifurcation
Manifolds
Mathematical models
Stability
title HOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR–PREY SYSTEM INVOLVING TWO DELAYS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A05%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HOPF%20BIFURCATION%20ANALYSIS%20FOR%20A%20RATIO-DEPENDENT%20PREDATOR%E2%80%93PREY%20SYSTEM%20INVOLVING%20TWO%20DELAYS&rft.jtitle=The%20ANZIAM%20journal&rft.au=KARAOGLU,%20E.&rft.date=2014-01-01&rft.volume=55&rft.issue=3&rft.spage=214&rft.epage=231&rft.pages=214-231&rft.issn=1446-1811&rft.eissn=1446-8735&rft_id=info:doi/10.1017/S1446181114000054&rft_dat=%3Cproquest_cross%3E1660044513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660044513&rft_id=info:pmid/&rft_cupid=10_1017_S1446181114000054&rfr_iscdi=true