Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory

In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2015-01, Vol.119, p.238-250
Hauptverfasser: Golmakani, M.E., Rezatalab, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue
container_start_page 238
container_title Composite structures
container_volume 119
creator Golmakani, M.E.
Rezatalab, J.
description In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT) of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. The accuracy of the present results is validated by comparing the solutions with those reported by the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties, type of planar loading, mode numbers and boundary conditions are discussed in details.
doi_str_mv 10.1016/j.compstruct.2014.08.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660042851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822314004279</els_id><sourcerecordid>1660042851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-496993afe6f23b427a604cdb316a890734079e1d97867deb005e0c1292a500a83</originalsourceid><addsrcrecordid>eNqFkDFv1TAURi1EJR4t_8EjS8K1nTjOCFULSAWWdrYc-4b6kdjBdqqWX4_LQ2Jk8nDPdyQfQiiDlgGT746tjeuWS9ptaTmwrgXVghhekANTw9gwUP1LcgAuRaM4F6_I65yPAKA6xg7k19cY9uDnmFY6efPozUKn3f5YfPhO40xjKvexpLh5S4MJcVtMwUxxndA5dNQHagLFxeRSiRWd36vI5HqKgYYYlmir8osPrirpnzkt9xjT0wU5m82S8c3f95zcXV_dXn5qbr59_Hz5_qaxomel6UY5jsLMKGcupo4PRkJn3SSYNGqEQXQwjMjcOCg5OJwAegTL-MhND2CUOCdvT94txZ875qJXny0uiwkY96yZlAAdVz2rqDqhNsWcE856S3416Ukz0M-59VH_y62fc2tQuuau0w-nKdavPHhMOluPwdYiCSvrov-_5DeiypB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660042851</pqid></control><display><type>article</type><title>Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory</title><source>Access via ScienceDirect (Elsevier)</source><creator>Golmakani, M.E. ; Rezatalab, J.</creator><creatorcontrib>Golmakani, M.E. ; Rezatalab, J.</creatorcontrib><description>In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT) of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. The accuracy of the present results is validated by comparing the solutions with those reported by the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties, type of planar loading, mode numbers and boundary conditions are discussed in details.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2014.08.037</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundary conditions ; Buckling ; Composite structures ; Differential equations ; Differential quadrature method ; Graphene ; Mathematical analysis ; Mindlin plate theory ; Nanostructure ; Nonlocal Mindlin theory ; Nonuniform biaxial buckling ; Orthotropic nanoplate</subject><ispartof>Composite structures, 2015-01, Vol.119, p.238-250</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-496993afe6f23b427a604cdb316a890734079e1d97867deb005e0c1292a500a83</citedby><cites>FETCH-LOGICAL-c351t-496993afe6f23b427a604cdb316a890734079e1d97867deb005e0c1292a500a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2014.08.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Golmakani, M.E.</creatorcontrib><creatorcontrib>Rezatalab, J.</creatorcontrib><title>Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory</title><title>Composite structures</title><description>In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT) of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. The accuracy of the present results is validated by comparing the solutions with those reported by the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties, type of planar loading, mode numbers and boundary conditions are discussed in details.</description><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Composite structures</subject><subject>Differential equations</subject><subject>Differential quadrature method</subject><subject>Graphene</subject><subject>Mathematical analysis</subject><subject>Mindlin plate theory</subject><subject>Nanostructure</subject><subject>Nonlocal Mindlin theory</subject><subject>Nonuniform biaxial buckling</subject><subject>Orthotropic nanoplate</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkDFv1TAURi1EJR4t_8EjS8K1nTjOCFULSAWWdrYc-4b6kdjBdqqWX4_LQ2Jk8nDPdyQfQiiDlgGT746tjeuWS9ptaTmwrgXVghhekANTw9gwUP1LcgAuRaM4F6_I65yPAKA6xg7k19cY9uDnmFY6efPozUKn3f5YfPhO40xjKvexpLh5S4MJcVtMwUxxndA5dNQHagLFxeRSiRWd36vI5HqKgYYYlmir8osPrirpnzkt9xjT0wU5m82S8c3f95zcXV_dXn5qbr59_Hz5_qaxomel6UY5jsLMKGcupo4PRkJn3SSYNGqEQXQwjMjcOCg5OJwAegTL-MhND2CUOCdvT94txZ875qJXny0uiwkY96yZlAAdVz2rqDqhNsWcE856S3416Ukz0M-59VH_y62fc2tQuuau0w-nKdavPHhMOluPwdYiCSvrov-_5DeiypB6</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Golmakani, M.E.</creator><creator>Rezatalab, J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory</title><author>Golmakani, M.E. ; Rezatalab, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-496993afe6f23b427a604cdb316a890734079e1d97867deb005e0c1292a500a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Composite structures</topic><topic>Differential equations</topic><topic>Differential quadrature method</topic><topic>Graphene</topic><topic>Mathematical analysis</topic><topic>Mindlin plate theory</topic><topic>Nanostructure</topic><topic>Nonlocal Mindlin theory</topic><topic>Nonuniform biaxial buckling</topic><topic>Orthotropic nanoplate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golmakani, M.E.</creatorcontrib><creatorcontrib>Rezatalab, J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golmakani, M.E.</au><au>Rezatalab, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory</atitle><jtitle>Composite structures</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>119</volume><spage>238</spage><epage>250</epage><pages>238-250</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT) of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. The accuracy of the present results is validated by comparing the solutions with those reported by the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties, type of planar loading, mode numbers and boundary conditions are discussed in details.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2014.08.037</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2015-01, Vol.119, p.238-250
issn 0263-8223
1879-1085
language eng
recordid cdi_proquest_miscellaneous_1660042851
source Access via ScienceDirect (Elsevier)
subjects Boundary conditions
Buckling
Composite structures
Differential equations
Differential quadrature method
Graphene
Mathematical analysis
Mindlin plate theory
Nanostructure
Nonlocal Mindlin theory
Nonuniform biaxial buckling
Orthotropic nanoplate
title Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonuniform%20biaxial%20buckling%20of%20orthotropic%20nanoplates%20embedded%20in%20an%20elastic%20medium%20based%20on%20nonlocal%20Mindlin%20plate%20theory&rft.jtitle=Composite%20structures&rft.au=Golmakani,%20M.E.&rft.date=2015-01-01&rft.volume=119&rft.spage=238&rft.epage=250&rft.pages=238-250&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2014.08.037&rft_dat=%3Cproquest_cross%3E1660042851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660042851&rft_id=info:pmid/&rft_els_id=S0263822314004279&rfr_iscdi=true