Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory
In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilib...
Gespeichert in:
Veröffentlicht in: | Composite structures 2015-01, Vol.119, p.238-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | |
container_start_page | 238 |
container_title | Composite structures |
container_volume | 119 |
creator | Golmakani, M.E. Rezatalab, J. |
description | In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT) of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. The accuracy of the present results is validated by comparing the solutions with those reported by the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties, type of planar loading, mode numbers and boundary conditions are discussed in details. |
doi_str_mv | 10.1016/j.compstruct.2014.08.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660042851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822314004279</els_id><sourcerecordid>1660042851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-496993afe6f23b427a604cdb316a890734079e1d97867deb005e0c1292a500a83</originalsourceid><addsrcrecordid>eNqFkDFv1TAURi1EJR4t_8EjS8K1nTjOCFULSAWWdrYc-4b6kdjBdqqWX4_LQ2Jk8nDPdyQfQiiDlgGT746tjeuWS9ptaTmwrgXVghhekANTw9gwUP1LcgAuRaM4F6_I65yPAKA6xg7k19cY9uDnmFY6efPozUKn3f5YfPhO40xjKvexpLh5S4MJcVtMwUxxndA5dNQHagLFxeRSiRWd36vI5HqKgYYYlmir8osPrirpnzkt9xjT0wU5m82S8c3f95zcXV_dXn5qbr59_Hz5_qaxomel6UY5jsLMKGcupo4PRkJn3SSYNGqEQXQwjMjcOCg5OJwAegTL-MhND2CUOCdvT94txZ875qJXny0uiwkY96yZlAAdVz2rqDqhNsWcE856S3416Ukz0M-59VH_y62fc2tQuuau0w-nKdavPHhMOluPwdYiCSvrov-_5DeiypB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660042851</pqid></control><display><type>article</type><title>Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory</title><source>Access via ScienceDirect (Elsevier)</source><creator>Golmakani, M.E. ; Rezatalab, J.</creator><creatorcontrib>Golmakani, M.E. ; Rezatalab, J.</creatorcontrib><description>In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT) of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. The accuracy of the present results is validated by comparing the solutions with those reported by the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties, type of planar loading, mode numbers and boundary conditions are discussed in details.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2014.08.037</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundary conditions ; Buckling ; Composite structures ; Differential equations ; Differential quadrature method ; Graphene ; Mathematical analysis ; Mindlin plate theory ; Nanostructure ; Nonlocal Mindlin theory ; Nonuniform biaxial buckling ; Orthotropic nanoplate</subject><ispartof>Composite structures, 2015-01, Vol.119, p.238-250</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-496993afe6f23b427a604cdb316a890734079e1d97867deb005e0c1292a500a83</citedby><cites>FETCH-LOGICAL-c351t-496993afe6f23b427a604cdb316a890734079e1d97867deb005e0c1292a500a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2014.08.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Golmakani, M.E.</creatorcontrib><creatorcontrib>Rezatalab, J.</creatorcontrib><title>Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory</title><title>Composite structures</title><description>In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT) of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. The accuracy of the present results is validated by comparing the solutions with those reported by the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties, type of planar loading, mode numbers and boundary conditions are discussed in details.</description><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Composite structures</subject><subject>Differential equations</subject><subject>Differential quadrature method</subject><subject>Graphene</subject><subject>Mathematical analysis</subject><subject>Mindlin plate theory</subject><subject>Nanostructure</subject><subject>Nonlocal Mindlin theory</subject><subject>Nonuniform biaxial buckling</subject><subject>Orthotropic nanoplate</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkDFv1TAURi1EJR4t_8EjS8K1nTjOCFULSAWWdrYc-4b6kdjBdqqWX4_LQ2Jk8nDPdyQfQiiDlgGT746tjeuWS9ptaTmwrgXVghhekANTw9gwUP1LcgAuRaM4F6_I65yPAKA6xg7k19cY9uDnmFY6efPozUKn3f5YfPhO40xjKvexpLh5S4MJcVtMwUxxndA5dNQHagLFxeRSiRWd36vI5HqKgYYYlmir8osPrirpnzkt9xjT0wU5m82S8c3f95zcXV_dXn5qbr59_Hz5_qaxomel6UY5jsLMKGcupo4PRkJn3SSYNGqEQXQwjMjcOCg5OJwAegTL-MhND2CUOCdvT94txZ875qJXny0uiwkY96yZlAAdVz2rqDqhNsWcE856S3416Ukz0M-59VH_y62fc2tQuuau0w-nKdavPHhMOluPwdYiCSvrov-_5DeiypB6</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Golmakani, M.E.</creator><creator>Rezatalab, J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory</title><author>Golmakani, M.E. ; Rezatalab, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-496993afe6f23b427a604cdb316a890734079e1d97867deb005e0c1292a500a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Composite structures</topic><topic>Differential equations</topic><topic>Differential quadrature method</topic><topic>Graphene</topic><topic>Mathematical analysis</topic><topic>Mindlin plate theory</topic><topic>Nanostructure</topic><topic>Nonlocal Mindlin theory</topic><topic>Nonuniform biaxial buckling</topic><topic>Orthotropic nanoplate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golmakani, M.E.</creatorcontrib><creatorcontrib>Rezatalab, J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golmakani, M.E.</au><au>Rezatalab, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory</atitle><jtitle>Composite structures</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>119</volume><spage>238</spage><epage>250</epage><pages>238-250</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>In this article, non-uniform biaxial buckling analysis of orthotropic single-layered graphene sheet embedded in a Pasternak elastic medium is investigated using the nonlocal Mindlin plate theory. All edges of the graphene sheet are subjected to linearly varying normal stresses. The nanoplate equilibrium equations are derived in terms of generalized displacements based on first-order shear deformation theory (FSDT) of orthotropic nanoplates using the nonlocal differential constitutive relations of Eringen. Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. The accuracy of the present results is validated by comparing the solutions with those reported by the available literatures. Finally, influences of small scale effect, aspect ratio, polymer matrix properties, type of planar loading, mode numbers and boundary conditions are discussed in details.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2014.08.037</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8223 |
ispartof | Composite structures, 2015-01, Vol.119, p.238-250 |
issn | 0263-8223 1879-1085 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660042851 |
source | Access via ScienceDirect (Elsevier) |
subjects | Boundary conditions Buckling Composite structures Differential equations Differential quadrature method Graphene Mathematical analysis Mindlin plate theory Nanostructure Nonlocal Mindlin theory Nonuniform biaxial buckling Orthotropic nanoplate |
title | Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonuniform%20biaxial%20buckling%20of%20orthotropic%20nanoplates%20embedded%20in%20an%20elastic%20medium%20based%20on%20nonlocal%20Mindlin%20plate%20theory&rft.jtitle=Composite%20structures&rft.au=Golmakani,%20M.E.&rft.date=2015-01-01&rft.volume=119&rft.spage=238&rft.epage=250&rft.pages=238-250&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2014.08.037&rft_dat=%3Cproquest_cross%3E1660042851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660042851&rft_id=info:pmid/&rft_els_id=S0263822314004279&rfr_iscdi=true |