How Likely is Simpson's Paradox in Path Models?
Simpson's paradox is a phenomenon arising from multivariate statistical analyses that often leads to paradoxical conclusions in the field of e-collaboration as well as many other fields where multivariate methods are employed. This work derives a general inequality for the occurrence of Simpson...
Gespeichert in:
Veröffentlicht in: | International journal of e-collaboration 2015-01, Vol.11 (1), p.1-7 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | International journal of e-collaboration |
container_volume | 11 |
creator | Kock, Ned |
description | Simpson's paradox is a phenomenon arising from multivariate statistical analyses that often leads to paradoxical conclusions in the field of e-collaboration as well as many other fields where multivariate methods are employed. This work derives a general inequality for the occurrence of Simpson's paradox in path models with or without latent variables. The inequality is then used to estimate the probability that Simpson's paradox would occur at random in path models with two predictors and one criterion variable. This probability is found to be approximately 12.8 percent, slightly higher than 1 occurrence per 8 path models. This estimate suggests that Simpson's paradox is likely to occur in empirical studies, in the field of e-collaboration and other fields, frequently enough to be a source of concern. |
doi_str_mv | 10.4018/ijec.2015010101 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660042294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A417321867</galeid><sourcerecordid>A417321867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-890c5633c2ead156fe430a2a51f4bd5e713f9cf303a993d76757caf2ff5c6a1f3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoqNWz1wUP9WDbTLLZj5NIsSpUFNRziNmkpm43dWcX9d-bteIXlYFkCM87M5mXkAOgw5hCNnJzo4eMgqDQxQbZARFnA55ksPmVp3yb7CLOKeWCs3iHjC78SzR1T6Z8ixxGt26xRF_1MbpRtSr8a-SqkDaP0ZUvTIkne2TLqhLN_ufdI_eTs7vxxWB6fX45Pp0OdOjfDLKcapFwrplRBYjEmphTxZQAGz8UwqTAba4tp1zlOS_SJBWpVpZZK3SiwPIeOVrVXdb-uTXYyIVDbcpSVca3KCFJKI0Zy-OAHv5B576tqzCdZDmHHICJH9RMlUa6yvqmVrorKk9jSDmDLGynR4ZrqBCFWTjtK2NdeP8lOP4heGjRVQbDgW722OBMtYi_8dEK17VHrI2Vy9otVP0mgcrORtnZKL9tDIr-SuFm7vtjfyi5LLqVTdaQK2-lQ_nprUT54e0_DQH4O97dsF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931911254</pqid></control><display><type>article</type><title>How Likely is Simpson's Paradox in Path Models?</title><source>Alma/SFX Local Collection</source><creator>Kock, Ned</creator><creatorcontrib>Kock, Ned</creatorcontrib><description>Simpson's paradox is a phenomenon arising from multivariate statistical analyses that often leads to paradoxical conclusions in the field of e-collaboration as well as many other fields where multivariate methods are employed. This work derives a general inequality for the occurrence of Simpson's paradox in path models with or without latent variables. The inequality is then used to estimate the probability that Simpson's paradox would occur at random in path models with two predictors and one criterion variable. This probability is found to be approximately 12.8 percent, slightly higher than 1 occurrence per 8 path models. This estimate suggests that Simpson's paradox is likely to occur in empirical studies, in the field of e-collaboration and other fields, frequently enough to be a source of concern.</description><identifier>ISSN: 1548-3673</identifier><identifier>EISSN: 1548-3681</identifier><identifier>DOI: 10.4018/ijec.2015010101</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Analysis ; Collaboration ; Cooperation ; Criteria ; Empirical analysis ; Estimates ; Inequalities ; Mathematical logic ; Mathematical models ; Multivariate analysis ; Multivariate statistical analysis ; Paradox ; Paradoxes ; Statistical analysis</subject><ispartof>International journal of e-collaboration, 2015-01, Vol.11 (1), p.1-7</ispartof><rights>COPYRIGHT 2015 IGI Global</rights><rights>Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-890c5633c2ead156fe430a2a51f4bd5e713f9cf303a993d76757caf2ff5c6a1f3</citedby><cites>FETCH-LOGICAL-c501t-890c5633c2ead156fe430a2a51f4bd5e713f9cf303a993d76757caf2ff5c6a1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kock, Ned</creatorcontrib><title>How Likely is Simpson's Paradox in Path Models?</title><title>International journal of e-collaboration</title><description>Simpson's paradox is a phenomenon arising from multivariate statistical analyses that often leads to paradoxical conclusions in the field of e-collaboration as well as many other fields where multivariate methods are employed. This work derives a general inequality for the occurrence of Simpson's paradox in path models with or without latent variables. The inequality is then used to estimate the probability that Simpson's paradox would occur at random in path models with two predictors and one criterion variable. This probability is found to be approximately 12.8 percent, slightly higher than 1 occurrence per 8 path models. This estimate suggests that Simpson's paradox is likely to occur in empirical studies, in the field of e-collaboration and other fields, frequently enough to be a source of concern.</description><subject>Analysis</subject><subject>Collaboration</subject><subject>Cooperation</subject><subject>Criteria</subject><subject>Empirical analysis</subject><subject>Estimates</subject><subject>Inequalities</subject><subject>Mathematical logic</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>Multivariate statistical analysis</subject><subject>Paradox</subject><subject>Paradoxes</subject><subject>Statistical analysis</subject><issn>1548-3673</issn><issn>1548-3681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LAzEQhoMoqNWz1wUP9WDbTLLZj5NIsSpUFNRziNmkpm43dWcX9d-bteIXlYFkCM87M5mXkAOgw5hCNnJzo4eMgqDQxQbZARFnA55ksPmVp3yb7CLOKeWCs3iHjC78SzR1T6Z8ixxGt26xRF_1MbpRtSr8a-SqkDaP0ZUvTIkne2TLqhLN_ufdI_eTs7vxxWB6fX45Pp0OdOjfDLKcapFwrplRBYjEmphTxZQAGz8UwqTAba4tp1zlOS_SJBWpVpZZK3SiwPIeOVrVXdb-uTXYyIVDbcpSVca3KCFJKI0Zy-OAHv5B576tqzCdZDmHHICJH9RMlUa6yvqmVrorKk9jSDmDLGynR4ZrqBCFWTjtK2NdeP8lOP4heGjRVQbDgW722OBMtYi_8dEK17VHrI2Vy9otVP0mgcrORtnZKL9tDIr-SuFm7vtjfyi5LLqVTdaQK2-lQ_nprUT54e0_DQH4O97dsF4</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Kock, Ned</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20150101</creationdate><title>How Likely is Simpson's Paradox in Path Models?</title><author>Kock, Ned</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-890c5633c2ead156fe430a2a51f4bd5e713f9cf303a993d76757caf2ff5c6a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Collaboration</topic><topic>Cooperation</topic><topic>Criteria</topic><topic>Empirical analysis</topic><topic>Estimates</topic><topic>Inequalities</topic><topic>Mathematical logic</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>Multivariate statistical analysis</topic><topic>Paradox</topic><topic>Paradoxes</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kock, Ned</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of e-collaboration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kock, Ned</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Likely is Simpson's Paradox in Path Models?</atitle><jtitle>International journal of e-collaboration</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>11</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1548-3673</issn><eissn>1548-3681</eissn><abstract>Simpson's paradox is a phenomenon arising from multivariate statistical analyses that often leads to paradoxical conclusions in the field of e-collaboration as well as many other fields where multivariate methods are employed. This work derives a general inequality for the occurrence of Simpson's paradox in path models with or without latent variables. The inequality is then used to estimate the probability that Simpson's paradox would occur at random in path models with two predictors and one criterion variable. This probability is found to be approximately 12.8 percent, slightly higher than 1 occurrence per 8 path models. This estimate suggests that Simpson's paradox is likely to occur in empirical studies, in the field of e-collaboration and other fields, frequently enough to be a source of concern.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/ijec.2015010101</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-3673 |
ispartof | International journal of e-collaboration, 2015-01, Vol.11 (1), p.1-7 |
issn | 1548-3673 1548-3681 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660042294 |
source | Alma/SFX Local Collection |
subjects | Analysis Collaboration Cooperation Criteria Empirical analysis Estimates Inequalities Mathematical logic Mathematical models Multivariate analysis Multivariate statistical analysis Paradox Paradoxes Statistical analysis |
title | How Likely is Simpson's Paradox in Path Models? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Likely%20is%20Simpson's%20Paradox%20in%20Path%20Models?&rft.jtitle=International%20journal%20of%20e-collaboration&rft.au=Kock,%20Ned&rft.date=2015-01-01&rft.volume=11&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1548-3673&rft.eissn=1548-3681&rft_id=info:doi/10.4018/ijec.2015010101&rft_dat=%3Cgale_proqu%3EA417321867%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931911254&rft_id=info:pmid/&rft_galeid=A417321867&rfr_iscdi=true |