Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach
Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through...
Gespeichert in:
Veröffentlicht in: | Computer speech & language 2015-03, Vol.30 (1), p.43-60 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Computer speech & language |
container_volume | 30 |
creator | López-de-Ipiña, Karmele Solé-Casals, Jordi Eguiraun, Harkaitz Alonso, J.B. Travieso, C.M. Ezeiza, Aitzol Barroso, Nora Ecay-Torres, Miriam Martinez-Lage, Pablo Beitia, Blanca |
description | Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost. |
doi_str_mv | 10.1016/j.csl.2014.08.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660041608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088523081400076X</els_id><sourcerecordid>1660041608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-69cba1d5c83bec815c40cc79eb031e8090fd4d3e95c3781c467526eb1c36d3643</originalsourceid><addsrcrecordid>eNp9kEFP4zAQhS20SHSBH8DNN7gkjOvEdeBUIQpISFzgbLmTCXWVxsWTsoJfj6vumdOMRu-90fuEuFBQKlDmel0i9-UUVFWCLQGmR2KioKkLq43-IyZgbV1MNdgT8Zd5DQCmrmYT8W9Bftwlkkw94RjiILuYJG_jMPqB4o7zToQr6Qfff3FgOUbpQyvDIOf994rChtIlyzYweaY8_fsQs-5GzmWXPI6-z8cNDbwP99ttih5XZ-K48z3T-f95Kt4W9693j8Xzy8PT3fy5QD3TY2EaXHrV1mj1ktCqGitAnDW0BK3IQgNdW7WamjrrrcLKzOqpoaVCbVptKn0qrg65-e3Hjnh0m8BIfX8o55QxAJUyYLNUHaSYInOizm1T2Pj05RS4PWS3dhmy20N2YF2GnD23Bw_lDp-BkmMMNCC1IWWcro3hF_cPkViGlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660041608</pqid></control><display><type>article</type><title>Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>López-de-Ipiña, Karmele ; Solé-Casals, Jordi ; Eguiraun, Harkaitz ; Alonso, J.B. ; Travieso, C.M. ; Ezeiza, Aitzol ; Barroso, Nora ; Ecay-Torres, Miriam ; Martinez-Lage, Pablo ; Beitia, Blanca</creator><creatorcontrib>López-de-Ipiña, Karmele ; Solé-Casals, Jordi ; Eguiraun, Harkaitz ; Alonso, J.B. ; Travieso, C.M. ; Ezeiza, Aitzol ; Barroso, Nora ; Ecay-Torres, Miriam ; Martinez-Lage, Pablo ; Beitia, Blanca</creatorcontrib><description>Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.</description><identifier>ISSN: 0885-2308</identifier><identifier>EISSN: 1095-8363</identifier><identifier>DOI: 10.1016/j.csl.2014.08.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alzheimer's disease ; Alzheimer's disease diagnosis ; Biomarkers ; Diagnosis ; Fractal analysis ; Fractal dimensions ; Fractals ; Nonlinear speech processing ; Searching ; Speech ; Spontaneous ; Spontaneous speech</subject><ispartof>Computer speech & language, 2015-03, Vol.30 (1), p.43-60</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-69cba1d5c83bec815c40cc79eb031e8090fd4d3e95c3781c467526eb1c36d3643</citedby><cites>FETCH-LOGICAL-c373t-69cba1d5c83bec815c40cc79eb031e8090fd4d3e95c3781c467526eb1c36d3643</cites><orcidid>0000-0002-4014-6376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csl.2014.08.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>López-de-Ipiña, Karmele</creatorcontrib><creatorcontrib>Solé-Casals, Jordi</creatorcontrib><creatorcontrib>Eguiraun, Harkaitz</creatorcontrib><creatorcontrib>Alonso, J.B.</creatorcontrib><creatorcontrib>Travieso, C.M.</creatorcontrib><creatorcontrib>Ezeiza, Aitzol</creatorcontrib><creatorcontrib>Barroso, Nora</creatorcontrib><creatorcontrib>Ecay-Torres, Miriam</creatorcontrib><creatorcontrib>Martinez-Lage, Pablo</creatorcontrib><creatorcontrib>Beitia, Blanca</creatorcontrib><title>Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach</title><title>Computer speech & language</title><description>Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.</description><subject>Alzheimer's disease</subject><subject>Alzheimer's disease diagnosis</subject><subject>Biomarkers</subject><subject>Diagnosis</subject><subject>Fractal analysis</subject><subject>Fractal dimensions</subject><subject>Fractals</subject><subject>Nonlinear speech processing</subject><subject>Searching</subject><subject>Speech</subject><subject>Spontaneous</subject><subject>Spontaneous speech</subject><issn>0885-2308</issn><issn>1095-8363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP4zAQhS20SHSBH8DNN7gkjOvEdeBUIQpISFzgbLmTCXWVxsWTsoJfj6vumdOMRu-90fuEuFBQKlDmel0i9-UUVFWCLQGmR2KioKkLq43-IyZgbV1MNdgT8Zd5DQCmrmYT8W9Bftwlkkw94RjiILuYJG_jMPqB4o7zToQr6Qfff3FgOUbpQyvDIOf994rChtIlyzYweaY8_fsQs-5GzmWXPI6-z8cNDbwP99ttih5XZ-K48z3T-f95Kt4W9693j8Xzy8PT3fy5QD3TY2EaXHrV1mj1ktCqGitAnDW0BK3IQgNdW7WamjrrrcLKzOqpoaVCbVptKn0qrg65-e3Hjnh0m8BIfX8o55QxAJUyYLNUHaSYInOizm1T2Pj05RS4PWS3dhmy20N2YF2GnD23Bw_lDp-BkmMMNCC1IWWcro3hF_cPkViGlw</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>López-de-Ipiña, Karmele</creator><creator>Solé-Casals, Jordi</creator><creator>Eguiraun, Harkaitz</creator><creator>Alonso, J.B.</creator><creator>Travieso, C.M.</creator><creator>Ezeiza, Aitzol</creator><creator>Barroso, Nora</creator><creator>Ecay-Torres, Miriam</creator><creator>Martinez-Lage, Pablo</creator><creator>Beitia, Blanca</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4014-6376</orcidid></search><sort><creationdate>20150301</creationdate><title>Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach</title><author>López-de-Ipiña, Karmele ; Solé-Casals, Jordi ; Eguiraun, Harkaitz ; Alonso, J.B. ; Travieso, C.M. ; Ezeiza, Aitzol ; Barroso, Nora ; Ecay-Torres, Miriam ; Martinez-Lage, Pablo ; Beitia, Blanca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-69cba1d5c83bec815c40cc79eb031e8090fd4d3e95c3781c467526eb1c36d3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alzheimer's disease</topic><topic>Alzheimer's disease diagnosis</topic><topic>Biomarkers</topic><topic>Diagnosis</topic><topic>Fractal analysis</topic><topic>Fractal dimensions</topic><topic>Fractals</topic><topic>Nonlinear speech processing</topic><topic>Searching</topic><topic>Speech</topic><topic>Spontaneous</topic><topic>Spontaneous speech</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-de-Ipiña, Karmele</creatorcontrib><creatorcontrib>Solé-Casals, Jordi</creatorcontrib><creatorcontrib>Eguiraun, Harkaitz</creatorcontrib><creatorcontrib>Alonso, J.B.</creatorcontrib><creatorcontrib>Travieso, C.M.</creatorcontrib><creatorcontrib>Ezeiza, Aitzol</creatorcontrib><creatorcontrib>Barroso, Nora</creatorcontrib><creatorcontrib>Ecay-Torres, Miriam</creatorcontrib><creatorcontrib>Martinez-Lage, Pablo</creatorcontrib><creatorcontrib>Beitia, Blanca</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer speech & language</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-de-Ipiña, Karmele</au><au>Solé-Casals, Jordi</au><au>Eguiraun, Harkaitz</au><au>Alonso, J.B.</au><au>Travieso, C.M.</au><au>Ezeiza, Aitzol</au><au>Barroso, Nora</au><au>Ecay-Torres, Miriam</au><au>Martinez-Lage, Pablo</au><au>Beitia, Blanca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach</atitle><jtitle>Computer speech & language</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>30</volume><issue>1</issue><spage>43</spage><epage>60</epage><pages>43-60</pages><issn>0885-2308</issn><eissn>1095-8363</eissn><abstract>Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csl.2014.08.002</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4014-6376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-2308 |
ispartof | Computer speech & language, 2015-03, Vol.30 (1), p.43-60 |
issn | 0885-2308 1095-8363 |
language | eng |
recordid | cdi_proquest_miscellaneous_1660041608 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Alzheimer's disease Alzheimer's disease diagnosis Biomarkers Diagnosis Fractal analysis Fractal dimensions Fractals Nonlinear speech processing Searching Speech Spontaneous Spontaneous speech |
title | Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20for%20spontaneous%20speech%20analysis%20to%20aid%20in%20Alzheimer's%20disease%20diagnosis:%20A%20fractal%20dimension%20approach&rft.jtitle=Computer%20speech%20&%20language&rft.au=L%C3%B3pez-de-Ipi%C3%B1a,%20Karmele&rft.date=2015-03-01&rft.volume=30&rft.issue=1&rft.spage=43&rft.epage=60&rft.pages=43-60&rft.issn=0885-2308&rft.eissn=1095-8363&rft_id=info:doi/10.1016/j.csl.2014.08.002&rft_dat=%3Cproquest_cross%3E1660041608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660041608&rft_id=info:pmid/&rft_els_id=S088523081400076X&rfr_iscdi=true |