Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach

Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer speech & language 2015-03, Vol.30 (1), p.43-60
Hauptverfasser: López-de-Ipiña, Karmele, Solé-Casals, Jordi, Eguiraun, Harkaitz, Alonso, J.B., Travieso, C.M., Ezeiza, Aitzol, Barroso, Nora, Ecay-Torres, Miriam, Martinez-Lage, Pablo, Beitia, Blanca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 43
container_title Computer speech & language
container_volume 30
creator López-de-Ipiña, Karmele
Solé-Casals, Jordi
Eguiraun, Harkaitz
Alonso, J.B.
Travieso, C.M.
Ezeiza, Aitzol
Barroso, Nora
Ecay-Torres, Miriam
Martinez-Lage, Pablo
Beitia, Blanca
description Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.
doi_str_mv 10.1016/j.csl.2014.08.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660041608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S088523081400076X</els_id><sourcerecordid>1660041608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-69cba1d5c83bec815c40cc79eb031e8090fd4d3e95c3781c467526eb1c36d3643</originalsourceid><addsrcrecordid>eNp9kEFP4zAQhS20SHSBH8DNN7gkjOvEdeBUIQpISFzgbLmTCXWVxsWTsoJfj6vumdOMRu-90fuEuFBQKlDmel0i9-UUVFWCLQGmR2KioKkLq43-IyZgbV1MNdgT8Zd5DQCmrmYT8W9Bftwlkkw94RjiILuYJG_jMPqB4o7zToQr6Qfff3FgOUbpQyvDIOf994rChtIlyzYweaY8_fsQs-5GzmWXPI6-z8cNDbwP99ttih5XZ-K48z3T-f95Kt4W9693j8Xzy8PT3fy5QD3TY2EaXHrV1mj1ktCqGitAnDW0BK3IQgNdW7WamjrrrcLKzOqpoaVCbVptKn0qrg65-e3Hjnh0m8BIfX8o55QxAJUyYLNUHaSYInOizm1T2Pj05RS4PWS3dhmy20N2YF2GnD23Bw_lDp-BkmMMNCC1IWWcro3hF_cPkViGlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660041608</pqid></control><display><type>article</type><title>Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>López-de-Ipiña, Karmele ; Solé-Casals, Jordi ; Eguiraun, Harkaitz ; Alonso, J.B. ; Travieso, C.M. ; Ezeiza, Aitzol ; Barroso, Nora ; Ecay-Torres, Miriam ; Martinez-Lage, Pablo ; Beitia, Blanca</creator><creatorcontrib>López-de-Ipiña, Karmele ; Solé-Casals, Jordi ; Eguiraun, Harkaitz ; Alonso, J.B. ; Travieso, C.M. ; Ezeiza, Aitzol ; Barroso, Nora ; Ecay-Torres, Miriam ; Martinez-Lage, Pablo ; Beitia, Blanca</creatorcontrib><description>Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.</description><identifier>ISSN: 0885-2308</identifier><identifier>EISSN: 1095-8363</identifier><identifier>DOI: 10.1016/j.csl.2014.08.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alzheimer's disease ; Alzheimer's disease diagnosis ; Biomarkers ; Diagnosis ; Fractal analysis ; Fractal dimensions ; Fractals ; Nonlinear speech processing ; Searching ; Speech ; Spontaneous ; Spontaneous speech</subject><ispartof>Computer speech &amp; language, 2015-03, Vol.30 (1), p.43-60</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-69cba1d5c83bec815c40cc79eb031e8090fd4d3e95c3781c467526eb1c36d3643</citedby><cites>FETCH-LOGICAL-c373t-69cba1d5c83bec815c40cc79eb031e8090fd4d3e95c3781c467526eb1c36d3643</cites><orcidid>0000-0002-4014-6376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csl.2014.08.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>López-de-Ipiña, Karmele</creatorcontrib><creatorcontrib>Solé-Casals, Jordi</creatorcontrib><creatorcontrib>Eguiraun, Harkaitz</creatorcontrib><creatorcontrib>Alonso, J.B.</creatorcontrib><creatorcontrib>Travieso, C.M.</creatorcontrib><creatorcontrib>Ezeiza, Aitzol</creatorcontrib><creatorcontrib>Barroso, Nora</creatorcontrib><creatorcontrib>Ecay-Torres, Miriam</creatorcontrib><creatorcontrib>Martinez-Lage, Pablo</creatorcontrib><creatorcontrib>Beitia, Blanca</creatorcontrib><title>Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach</title><title>Computer speech &amp; language</title><description>Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.</description><subject>Alzheimer's disease</subject><subject>Alzheimer's disease diagnosis</subject><subject>Biomarkers</subject><subject>Diagnosis</subject><subject>Fractal analysis</subject><subject>Fractal dimensions</subject><subject>Fractals</subject><subject>Nonlinear speech processing</subject><subject>Searching</subject><subject>Speech</subject><subject>Spontaneous</subject><subject>Spontaneous speech</subject><issn>0885-2308</issn><issn>1095-8363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kEFP4zAQhS20SHSBH8DNN7gkjOvEdeBUIQpISFzgbLmTCXWVxsWTsoJfj6vumdOMRu-90fuEuFBQKlDmel0i9-UUVFWCLQGmR2KioKkLq43-IyZgbV1MNdgT8Zd5DQCmrmYT8W9Bftwlkkw94RjiILuYJG_jMPqB4o7zToQr6Qfff3FgOUbpQyvDIOf994rChtIlyzYweaY8_fsQs-5GzmWXPI6-z8cNDbwP99ttih5XZ-K48z3T-f95Kt4W9693j8Xzy8PT3fy5QD3TY2EaXHrV1mj1ktCqGitAnDW0BK3IQgNdW7WamjrrrcLKzOqpoaVCbVptKn0qrg65-e3Hjnh0m8BIfX8o55QxAJUyYLNUHaSYInOizm1T2Pj05RS4PWS3dhmy20N2YF2GnD23Bw_lDp-BkmMMNCC1IWWcro3hF_cPkViGlw</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>López-de-Ipiña, Karmele</creator><creator>Solé-Casals, Jordi</creator><creator>Eguiraun, Harkaitz</creator><creator>Alonso, J.B.</creator><creator>Travieso, C.M.</creator><creator>Ezeiza, Aitzol</creator><creator>Barroso, Nora</creator><creator>Ecay-Torres, Miriam</creator><creator>Martinez-Lage, Pablo</creator><creator>Beitia, Blanca</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4014-6376</orcidid></search><sort><creationdate>20150301</creationdate><title>Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach</title><author>López-de-Ipiña, Karmele ; Solé-Casals, Jordi ; Eguiraun, Harkaitz ; Alonso, J.B. ; Travieso, C.M. ; Ezeiza, Aitzol ; Barroso, Nora ; Ecay-Torres, Miriam ; Martinez-Lage, Pablo ; Beitia, Blanca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-69cba1d5c83bec815c40cc79eb031e8090fd4d3e95c3781c467526eb1c36d3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alzheimer's disease</topic><topic>Alzheimer's disease diagnosis</topic><topic>Biomarkers</topic><topic>Diagnosis</topic><topic>Fractal analysis</topic><topic>Fractal dimensions</topic><topic>Fractals</topic><topic>Nonlinear speech processing</topic><topic>Searching</topic><topic>Speech</topic><topic>Spontaneous</topic><topic>Spontaneous speech</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-de-Ipiña, Karmele</creatorcontrib><creatorcontrib>Solé-Casals, Jordi</creatorcontrib><creatorcontrib>Eguiraun, Harkaitz</creatorcontrib><creatorcontrib>Alonso, J.B.</creatorcontrib><creatorcontrib>Travieso, C.M.</creatorcontrib><creatorcontrib>Ezeiza, Aitzol</creatorcontrib><creatorcontrib>Barroso, Nora</creatorcontrib><creatorcontrib>Ecay-Torres, Miriam</creatorcontrib><creatorcontrib>Martinez-Lage, Pablo</creatorcontrib><creatorcontrib>Beitia, Blanca</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer speech &amp; language</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-de-Ipiña, Karmele</au><au>Solé-Casals, Jordi</au><au>Eguiraun, Harkaitz</au><au>Alonso, J.B.</au><au>Travieso, C.M.</au><au>Ezeiza, Aitzol</au><au>Barroso, Nora</au><au>Ecay-Torres, Miriam</au><au>Martinez-Lage, Pablo</au><au>Beitia, Blanca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach</atitle><jtitle>Computer speech &amp; language</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>30</volume><issue>1</issue><spage>43</spage><epage>60</epage><pages>43-60</pages><issn>0885-2308</issn><eissn>1095-8363</eissn><abstract>Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csl.2014.08.002</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4014-6376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-2308
ispartof Computer speech & language, 2015-03, Vol.30 (1), p.43-60
issn 0885-2308
1095-8363
language eng
recordid cdi_proquest_miscellaneous_1660041608
source ScienceDirect Journals (5 years ago - present)
subjects Alzheimer's disease
Alzheimer's disease diagnosis
Biomarkers
Diagnosis
Fractal analysis
Fractal dimensions
Fractals
Nonlinear speech processing
Searching
Speech
Spontaneous
Spontaneous speech
title Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20for%20spontaneous%20speech%20analysis%20to%20aid%20in%20Alzheimer's%20disease%20diagnosis:%20A%20fractal%20dimension%20approach&rft.jtitle=Computer%20speech%20&%20language&rft.au=L%C3%B3pez-de-Ipi%C3%B1a,%20Karmele&rft.date=2015-03-01&rft.volume=30&rft.issue=1&rft.spage=43&rft.epage=60&rft.pages=43-60&rft.issn=0885-2308&rft.eissn=1095-8363&rft_id=info:doi/10.1016/j.csl.2014.08.002&rft_dat=%3Cproquest_cross%3E1660041608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660041608&rft_id=info:pmid/&rft_els_id=S088523081400076X&rfr_iscdi=true