On the stability of extrasolar planetary systems and other closely orbiting pairs

This paper considers the stability of tidal equilibria for planetary systems in which stellar rotation provides a significant contribution to the angular momentum budget. We begin by applying classic stability considerations for two bodies to planetary systems -- where one mass is much smaller than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2015-02, Vol.446 (4), p.3676-3676
Hauptverfasser: Adams, Fred C, Bloch, Anthony M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3676
container_issue 4
container_start_page 3676
container_title Monthly notices of the Royal Astronomical Society
container_volume 446
creator Adams, Fred C
Bloch, Anthony M
description This paper considers the stability of tidal equilibria for planetary systems in which stellar rotation provides a significant contribution to the angular momentum budget. We begin by applying classic stability considerations for two bodies to planetary systems -- where one mass is much smaller than the other. The application of these stability criteria to a subset of the Kepler sample indicates that the majority of the systems are not in a stable equilibrium state. Motivated by this finding, we generalize the stability calculation to include the quadrupole moment for the host star. In general, a stable equilibrium requires that the total system angular momentum exceeds a minimum value (denoted here as LX) and that the orbital angular momentum of the planet exceeds a minimum fraction of the total. Most, but not all, of the observed planetary systems in the sample have enough total angular momentum to allow an equilibrium state. Even with the generalizations of this paper, however, most systems have too little orbital angular momentum (relative to the total) and are not in an equilibrium configuration. Finally, we consider the time evolution of these planetary systems; the results constrain the tidal quality factor of the stars and suggest that 10... Q... 10... (ProQuest: ... denotes formulae/symbols omitted.)
doi_str_mv 10.1093/mnras/stu2397
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660039503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660039503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-e46d42d050a13e402e0cc611af81547a8521c7d9d544fe98bd571443241293f63</originalsourceid><addsrcrecordid>eNqNkc1Lw0AUxBdRsFaP3he8eIl9-50cpfgFhSLoOWyTjaYk2bhvA_a_d2t78uTpXX4zzLwh5JrBHYNCLPohWFxgnLgozAmZMaFVxgutT8kMQKgsN4ydkwvELQBIwfWMvK4HGj8dxWg3bdfGHfUNdd8xOfnOBjp2dnDRhh3FHUbXI7VDTX2SBFp1Hl2XFGHTxnb4oKNtA16Ss8Z26K6Od07eHx_els_Zav30srxfZZUwEDMndS15DQosE04Cd1BVmjHb5ExJY3PFWWXqolZSNq7IN7UyTKbQkvFCNFrMye3Bdwz-a3IYy77FynX7wH7CkmmdShcKxD9QJbURyTyhN3_QrZ_CkIokSnIhOAeTqOxAVcEjBteUY2j79KWSQbnfovzdojxuIX4A--p9fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642332207</pqid></control><display><type>article</type><title>On the stability of extrasolar planetary systems and other closely orbiting pairs</title><source>Oxford Journals Open Access Collection</source><creator>Adams, Fred C ; Bloch, Anthony M</creator><creatorcontrib>Adams, Fred C ; Bloch, Anthony M</creatorcontrib><description>This paper considers the stability of tidal equilibria for planetary systems in which stellar rotation provides a significant contribution to the angular momentum budget. We begin by applying classic stability considerations for two bodies to planetary systems -- where one mass is much smaller than the other. The application of these stability criteria to a subset of the Kepler sample indicates that the majority of the systems are not in a stable equilibrium state. Motivated by this finding, we generalize the stability calculation to include the quadrupole moment for the host star. In general, a stable equilibrium requires that the total system angular momentum exceeds a minimum value (denoted here as LX) and that the orbital angular momentum of the planet exceeds a minimum fraction of the total. Most, but not all, of the observed planetary systems in the sample have enough total angular momentum to allow an equilibrium state. Even with the generalizations of this paper, however, most systems have too little orbital angular momentum (relative to the total) and are not in an equilibrium configuration. Finally, we consider the time evolution of these planetary systems; the results constrain the tidal quality factor of the stars and suggest that 10... Q... 10... (ProQuest: ... denotes formulae/symbols omitted.)</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stu2397</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Angular momentum ; Extrasolar planets ; Mathematical analysis ; Orbitals ; Orbits ; Planetary evolution ; Planetary systems ; Quadrupoles ; Stability ; Star &amp; galaxy formation ; Stars</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-02, Vol.446 (4), p.3676-3676</ispartof><rights>Copyright Oxford University Press, UK Feb 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-e46d42d050a13e402e0cc611af81547a8521c7d9d544fe98bd571443241293f63</citedby><cites>FETCH-LOGICAL-c370t-e46d42d050a13e402e0cc611af81547a8521c7d9d544fe98bd571443241293f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Adams, Fred C</creatorcontrib><creatorcontrib>Bloch, Anthony M</creatorcontrib><title>On the stability of extrasolar planetary systems and other closely orbiting pairs</title><title>Monthly notices of the Royal Astronomical Society</title><description>This paper considers the stability of tidal equilibria for planetary systems in which stellar rotation provides a significant contribution to the angular momentum budget. We begin by applying classic stability considerations for two bodies to planetary systems -- where one mass is much smaller than the other. The application of these stability criteria to a subset of the Kepler sample indicates that the majority of the systems are not in a stable equilibrium state. Motivated by this finding, we generalize the stability calculation to include the quadrupole moment for the host star. In general, a stable equilibrium requires that the total system angular momentum exceeds a minimum value (denoted here as LX) and that the orbital angular momentum of the planet exceeds a minimum fraction of the total. Most, but not all, of the observed planetary systems in the sample have enough total angular momentum to allow an equilibrium state. Even with the generalizations of this paper, however, most systems have too little orbital angular momentum (relative to the total) and are not in an equilibrium configuration. Finally, we consider the time evolution of these planetary systems; the results constrain the tidal quality factor of the stars and suggest that 10... Q... 10... (ProQuest: ... denotes formulae/symbols omitted.)</description><subject>Angular momentum</subject><subject>Extrasolar planets</subject><subject>Mathematical analysis</subject><subject>Orbitals</subject><subject>Orbits</subject><subject>Planetary evolution</subject><subject>Planetary systems</subject><subject>Quadrupoles</subject><subject>Stability</subject><subject>Star &amp; galaxy formation</subject><subject>Stars</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc1Lw0AUxBdRsFaP3he8eIl9-50cpfgFhSLoOWyTjaYk2bhvA_a_d2t78uTpXX4zzLwh5JrBHYNCLPohWFxgnLgozAmZMaFVxgutT8kMQKgsN4ydkwvELQBIwfWMvK4HGj8dxWg3bdfGHfUNdd8xOfnOBjp2dnDRhh3FHUbXI7VDTX2SBFp1Hl2XFGHTxnb4oKNtA16Ss8Z26K6Od07eHx_els_Zav30srxfZZUwEDMndS15DQosE04Cd1BVmjHb5ExJY3PFWWXqolZSNq7IN7UyTKbQkvFCNFrMye3Bdwz-a3IYy77FynX7wH7CkmmdShcKxD9QJbURyTyhN3_QrZ_CkIokSnIhOAeTqOxAVcEjBteUY2j79KWSQbnfovzdojxuIX4A--p9fQ</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Adams, Fred C</creator><creator>Bloch, Anthony M</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20150201</creationdate><title>On the stability of extrasolar planetary systems and other closely orbiting pairs</title><author>Adams, Fred C ; Bloch, Anthony M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-e46d42d050a13e402e0cc611af81547a8521c7d9d544fe98bd571443241293f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Angular momentum</topic><topic>Extrasolar planets</topic><topic>Mathematical analysis</topic><topic>Orbitals</topic><topic>Orbits</topic><topic>Planetary evolution</topic><topic>Planetary systems</topic><topic>Quadrupoles</topic><topic>Stability</topic><topic>Star &amp; galaxy formation</topic><topic>Stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Fred C</creatorcontrib><creatorcontrib>Bloch, Anthony M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Fred C</au><au>Bloch, Anthony M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability of extrasolar planetary systems and other closely orbiting pairs</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>446</volume><issue>4</issue><spage>3676</spage><epage>3676</epage><pages>3676-3676</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>This paper considers the stability of tidal equilibria for planetary systems in which stellar rotation provides a significant contribution to the angular momentum budget. We begin by applying classic stability considerations for two bodies to planetary systems -- where one mass is much smaller than the other. The application of these stability criteria to a subset of the Kepler sample indicates that the majority of the systems are not in a stable equilibrium state. Motivated by this finding, we generalize the stability calculation to include the quadrupole moment for the host star. In general, a stable equilibrium requires that the total system angular momentum exceeds a minimum value (denoted here as LX) and that the orbital angular momentum of the planet exceeds a minimum fraction of the total. Most, but not all, of the observed planetary systems in the sample have enough total angular momentum to allow an equilibrium state. Even with the generalizations of this paper, however, most systems have too little orbital angular momentum (relative to the total) and are not in an equilibrium configuration. Finally, we consider the time evolution of these planetary systems; the results constrain the tidal quality factor of the stars and suggest that 10... Q... 10... (ProQuest: ... denotes formulae/symbols omitted.)</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stu2397</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-02, Vol.446 (4), p.3676-3676
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1660039503
source Oxford Journals Open Access Collection
subjects Angular momentum
Extrasolar planets
Mathematical analysis
Orbitals
Orbits
Planetary evolution
Planetary systems
Quadrupoles
Stability
Star & galaxy formation
Stars
title On the stability of extrasolar planetary systems and other closely orbiting pairs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20of%20extrasolar%20planetary%20systems%20and%20other%20closely%20orbiting%20pairs&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Adams,%20Fred%20C&rft.date=2015-02-01&rft.volume=446&rft.issue=4&rft.spage=3676&rft.epage=3676&rft.pages=3676-3676&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stu2397&rft_dat=%3Cproquest_cross%3E1660039503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642332207&rft_id=info:pmid/&rfr_iscdi=true