Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence

In this article, we describe a carbon nanotube (CNT)-based lateral flow biosensor (LFB) for rapid and sensitive detection of DNA sequence. Amine-modified DNA detection probe was covalently immobilized on the shortened multi-walled carbon nanotubes (MWCNTs) via diimide-activated amidation between the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2015-02, Vol.64, p.367-372
Hauptverfasser: Qiu, Wanwei, Xu, Hui, Takalkar, Sunitha, Gurung, Anant S., Liu, Bin, Zheng, Yafeng, Guo, Zebin, Baloda, Meenu, Baryeh, Kwaku, Liu, Guodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue
container_start_page 367
container_title Biosensors & bioelectronics
container_volume 64
creator Qiu, Wanwei
Xu, Hui
Takalkar, Sunitha
Gurung, Anant S.
Liu, Bin
Zheng, Yafeng
Guo, Zebin
Baloda, Meenu
Baryeh, Kwaku
Liu, Guodong
description In this article, we describe a carbon nanotube (CNT)-based lateral flow biosensor (LFB) for rapid and sensitive detection of DNA sequence. Amine-modified DNA detection probe was covalently immobilized on the shortened multi-walled carbon nanotubes (MWCNTs) via diimide-activated amidation between the carboxyl groups on the CNT surface and amine groups on the detection DNA probes. Sandwich-type DNA hybridization reactions were performed on the LFB and the captured MWCNTs on test zone and control zone of LFB produced the characteristic black bands, enabling visual detection of DNA sequences. Combining the advantages of lateral flow chromatographic separation with unique physical properties of MWCNT (large surface area), the optimized LFB was capable of detecting of 0.1nM target DNA without instrumentation. Quantitative detection could be realized by recording the intensity of the test line with the Image J software, and the detection limit of 40pM was obtained. This detection limit is 12.5 times lower than that of gold nanoparticle (GNP)-based LFB (0.5nM, Mao et al. Anal. Chem. 2009, 81, 1660–1668). Another important feature is that the preparation of MWCNT–DNA conjugates was robust and the use of MWCNT labels avoided the aggregation of conjugates and tedious preparation time, which were often met in the traditional GNP-based nucleic acid LFB. The applications of MWCNT-based LFB can be extended to visually detect protein biomarkers using MWCNT–antibody conjugates. The MWCNT-based LFB thus open a new door to prepare a new generation of LFB, and shows great promise for in-field and point-of-care diagnosis of genetic diseases and for the detection of infectious agents.
doi_str_mv 10.1016/j.bios.2014.09.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1660039497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566314007155</els_id><sourcerecordid>1629966700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b4ed3b192add4431f483954bbaa3189bc6af9cf1beb27996fa32ca11ef3e08b13</originalsourceid><addsrcrecordid>eNqNkT1PHDEQhq0oKByX_AEK5DLNbvy13rVEgy4QIiHShBbLH2PJp731Ye8R5d_HqyOUJMVopnjmndH7InROSUsJlV-2rY2ptIxQ0RLVEja8Qys69LwRjHfv0YqoTjadlPwUnZWyJYT0VJEP6JR1TDIi2Qo9bky2acKTmdJ8sNBYU8Dj0cyQzYjDmH7h5QpMJWUcai1jnOMzYDN5nM0-euxhBjfHqpMC_np_VaGnA0wOPqKTYMYCn176Gj3cXP_c3DZ3P75931zdNU4wNjdWgOeWKma8F4LTIAauOmGtMZwOyjppgnKBWrCsV0oGw5kzlELgQAZL-Rp9Puruc6qXy6x3sTgYRzNBOhRNpSSEK6H6_0BFX90V9YV_o6w-I_sqvUbsiLqcSskQ9D7Hncm_NSV6SUtv9eKjXtLSROmaVl26eNE_2B3415W_8VTg8ghA9e45QtbFxcVXH3M1XPsU39L_A2oApiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629966700</pqid></control><display><type>article</type><title>Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Qiu, Wanwei ; Xu, Hui ; Takalkar, Sunitha ; Gurung, Anant S. ; Liu, Bin ; Zheng, Yafeng ; Guo, Zebin ; Baloda, Meenu ; Baryeh, Kwaku ; Liu, Guodong</creator><creatorcontrib>Qiu, Wanwei ; Xu, Hui ; Takalkar, Sunitha ; Gurung, Anant S. ; Liu, Bin ; Zheng, Yafeng ; Guo, Zebin ; Baloda, Meenu ; Baryeh, Kwaku ; Liu, Guodong</creatorcontrib><description>In this article, we describe a carbon nanotube (CNT)-based lateral flow biosensor (LFB) for rapid and sensitive detection of DNA sequence. Amine-modified DNA detection probe was covalently immobilized on the shortened multi-walled carbon nanotubes (MWCNTs) via diimide-activated amidation between the carboxyl groups on the CNT surface and amine groups on the detection DNA probes. Sandwich-type DNA hybridization reactions were performed on the LFB and the captured MWCNTs on test zone and control zone of LFB produced the characteristic black bands, enabling visual detection of DNA sequences. Combining the advantages of lateral flow chromatographic separation with unique physical properties of MWCNT (large surface area), the optimized LFB was capable of detecting of 0.1nM target DNA without instrumentation. Quantitative detection could be realized by recording the intensity of the test line with the Image J software, and the detection limit of 40pM was obtained. This detection limit is 12.5 times lower than that of gold nanoparticle (GNP)-based LFB (0.5nM, Mao et al. Anal. Chem. 2009, 81, 1660–1668). Another important feature is that the preparation of MWCNT–DNA conjugates was robust and the use of MWCNT labels avoided the aggregation of conjugates and tedious preparation time, which were often met in the traditional GNP-based nucleic acid LFB. The applications of MWCNT-based LFB can be extended to visually detect protein biomarkers using MWCNT–antibody conjugates. The MWCNT-based LFB thus open a new door to prepare a new generation of LFB, and shows great promise for in-field and point-of-care diagnosis of genetic diseases and for the detection of infectious agents.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2014.09.028</identifier><identifier>PMID: 25262062</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Biosensing Techniques ; Biosensor ; Biosensors ; Carbon ; Carbon nanotubes ; Conjugates ; Deoxyribonucleic acid ; Diseases ; DNA ; DNA - isolation &amp; purification ; Gene sequencing ; Gold - chemistry ; Instrumentation ; Lateral flow ; Nanoparticles - chemistry ; Nanostructure ; Nanotubes, Carbon - chemistry ; Nucleic Acids - isolation &amp; purification</subject><ispartof>Biosensors &amp; bioelectronics, 2015-02, Vol.64, p.367-372</ispartof><rights>2014 Elsevier B.V.</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b4ed3b192add4431f483954bbaa3189bc6af9cf1beb27996fa32ca11ef3e08b13</citedby><cites>FETCH-LOGICAL-c422t-b4ed3b192add4431f483954bbaa3189bc6af9cf1beb27996fa32ca11ef3e08b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566314007155$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25262062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Wanwei</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Takalkar, Sunitha</creatorcontrib><creatorcontrib>Gurung, Anant S.</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Zheng, Yafeng</creatorcontrib><creatorcontrib>Guo, Zebin</creatorcontrib><creatorcontrib>Baloda, Meenu</creatorcontrib><creatorcontrib>Baryeh, Kwaku</creatorcontrib><creatorcontrib>Liu, Guodong</creatorcontrib><title>Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>In this article, we describe a carbon nanotube (CNT)-based lateral flow biosensor (LFB) for rapid and sensitive detection of DNA sequence. Amine-modified DNA detection probe was covalently immobilized on the shortened multi-walled carbon nanotubes (MWCNTs) via diimide-activated amidation between the carboxyl groups on the CNT surface and amine groups on the detection DNA probes. Sandwich-type DNA hybridization reactions were performed on the LFB and the captured MWCNTs on test zone and control zone of LFB produced the characteristic black bands, enabling visual detection of DNA sequences. Combining the advantages of lateral flow chromatographic separation with unique physical properties of MWCNT (large surface area), the optimized LFB was capable of detecting of 0.1nM target DNA without instrumentation. Quantitative detection could be realized by recording the intensity of the test line with the Image J software, and the detection limit of 40pM was obtained. This detection limit is 12.5 times lower than that of gold nanoparticle (GNP)-based LFB (0.5nM, Mao et al. Anal. Chem. 2009, 81, 1660–1668). Another important feature is that the preparation of MWCNT–DNA conjugates was robust and the use of MWCNT labels avoided the aggregation of conjugates and tedious preparation time, which were often met in the traditional GNP-based nucleic acid LFB. The applications of MWCNT-based LFB can be extended to visually detect protein biomarkers using MWCNT–antibody conjugates. The MWCNT-based LFB thus open a new door to prepare a new generation of LFB, and shows great promise for in-field and point-of-care diagnosis of genetic diseases and for the detection of infectious agents.</description><subject>Biosensing Techniques</subject><subject>Biosensor</subject><subject>Biosensors</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Conjugates</subject><subject>Deoxyribonucleic acid</subject><subject>Diseases</subject><subject>DNA</subject><subject>DNA - isolation &amp; purification</subject><subject>Gene sequencing</subject><subject>Gold - chemistry</subject><subject>Instrumentation</subject><subject>Lateral flow</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nucleic Acids - isolation &amp; purification</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkT1PHDEQhq0oKByX_AEK5DLNbvy13rVEgy4QIiHShBbLH2PJp731Ye8R5d_HqyOUJMVopnjmndH7InROSUsJlV-2rY2ptIxQ0RLVEja8Qys69LwRjHfv0YqoTjadlPwUnZWyJYT0VJEP6JR1TDIi2Qo9bky2acKTmdJ8sNBYU8Dj0cyQzYjDmH7h5QpMJWUcai1jnOMzYDN5nM0-euxhBjfHqpMC_np_VaGnA0wOPqKTYMYCn176Gj3cXP_c3DZ3P75931zdNU4wNjdWgOeWKma8F4LTIAauOmGtMZwOyjppgnKBWrCsV0oGw5kzlELgQAZL-Rp9Puruc6qXy6x3sTgYRzNBOhRNpSSEK6H6_0BFX90V9YV_o6w-I_sqvUbsiLqcSskQ9D7Hncm_NSV6SUtv9eKjXtLSROmaVl26eNE_2B3415W_8VTg8ghA9e45QtbFxcVXH3M1XPsU39L_A2oApiE</recordid><startdate>20150215</startdate><enddate>20150215</enddate><creator>Qiu, Wanwei</creator><creator>Xu, Hui</creator><creator>Takalkar, Sunitha</creator><creator>Gurung, Anant S.</creator><creator>Liu, Bin</creator><creator>Zheng, Yafeng</creator><creator>Guo, Zebin</creator><creator>Baloda, Meenu</creator><creator>Baryeh, Kwaku</creator><creator>Liu, Guodong</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20150215</creationdate><title>Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence</title><author>Qiu, Wanwei ; Xu, Hui ; Takalkar, Sunitha ; Gurung, Anant S. ; Liu, Bin ; Zheng, Yafeng ; Guo, Zebin ; Baloda, Meenu ; Baryeh, Kwaku ; Liu, Guodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b4ed3b192add4431f483954bbaa3189bc6af9cf1beb27996fa32ca11ef3e08b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biosensing Techniques</topic><topic>Biosensor</topic><topic>Biosensors</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Conjugates</topic><topic>Deoxyribonucleic acid</topic><topic>Diseases</topic><topic>DNA</topic><topic>DNA - isolation &amp; purification</topic><topic>Gene sequencing</topic><topic>Gold - chemistry</topic><topic>Instrumentation</topic><topic>Lateral flow</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nucleic Acids - isolation &amp; purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Wanwei</creatorcontrib><creatorcontrib>Xu, Hui</creatorcontrib><creatorcontrib>Takalkar, Sunitha</creatorcontrib><creatorcontrib>Gurung, Anant S.</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Zheng, Yafeng</creatorcontrib><creatorcontrib>Guo, Zebin</creatorcontrib><creatorcontrib>Baloda, Meenu</creatorcontrib><creatorcontrib>Baryeh, Kwaku</creatorcontrib><creatorcontrib>Liu, Guodong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Wanwei</au><au>Xu, Hui</au><au>Takalkar, Sunitha</au><au>Gurung, Anant S.</au><au>Liu, Bin</au><au>Zheng, Yafeng</au><au>Guo, Zebin</au><au>Baloda, Meenu</au><au>Baryeh, Kwaku</au><au>Liu, Guodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2015-02-15</date><risdate>2015</risdate><volume>64</volume><spage>367</spage><epage>372</epage><pages>367-372</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>In this article, we describe a carbon nanotube (CNT)-based lateral flow biosensor (LFB) for rapid and sensitive detection of DNA sequence. Amine-modified DNA detection probe was covalently immobilized on the shortened multi-walled carbon nanotubes (MWCNTs) via diimide-activated amidation between the carboxyl groups on the CNT surface and amine groups on the detection DNA probes. Sandwich-type DNA hybridization reactions were performed on the LFB and the captured MWCNTs on test zone and control zone of LFB produced the characteristic black bands, enabling visual detection of DNA sequences. Combining the advantages of lateral flow chromatographic separation with unique physical properties of MWCNT (large surface area), the optimized LFB was capable of detecting of 0.1nM target DNA without instrumentation. Quantitative detection could be realized by recording the intensity of the test line with the Image J software, and the detection limit of 40pM was obtained. This detection limit is 12.5 times lower than that of gold nanoparticle (GNP)-based LFB (0.5nM, Mao et al. Anal. Chem. 2009, 81, 1660–1668). Another important feature is that the preparation of MWCNT–DNA conjugates was robust and the use of MWCNT labels avoided the aggregation of conjugates and tedious preparation time, which were often met in the traditional GNP-based nucleic acid LFB. The applications of MWCNT-based LFB can be extended to visually detect protein biomarkers using MWCNT–antibody conjugates. The MWCNT-based LFB thus open a new door to prepare a new generation of LFB, and shows great promise for in-field and point-of-care diagnosis of genetic diseases and for the detection of infectious agents.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>25262062</pmid><doi>10.1016/j.bios.2014.09.028</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2015-02, Vol.64, p.367-372
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1660039497
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biosensing Techniques
Biosensor
Biosensors
Carbon
Carbon nanotubes
Conjugates
Deoxyribonucleic acid
Diseases
DNA
DNA - isolation & purification
Gene sequencing
Gold - chemistry
Instrumentation
Lateral flow
Nanoparticles - chemistry
Nanostructure
Nanotubes, Carbon - chemistry
Nucleic Acids - isolation & purification
title Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube-based%20lateral%20flow%20biosensor%20for%20sensitive%20and%20rapid%20detection%20of%20DNA%20sequence&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Qiu,%20Wanwei&rft.date=2015-02-15&rft.volume=64&rft.spage=367&rft.epage=372&rft.pages=367-372&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2014.09.028&rft_dat=%3Cproquest_cross%3E1629966700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629966700&rft_id=info:pmid/25262062&rft_els_id=S0956566314007155&rfr_iscdi=true